{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# MNIST Dataset Introduction\n", "\n", "Most examples are using MNIST dataset of handwritten digits. The dataset contains 60,000 examples for training and 10,000 examples for testing. The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1. For simplicity, each image has been flatten and converted to a 1-D numpy array of 784 features (28*28).\n", "\n", "## Overview\n", "\n", "![MNIST Digits](http://neuralnetworksanddeeplearning.com/images/mnist_100_digits.png)\n", "\n", "## Usage\n", "In our examples, we are using TensorFlow [input_data.py](https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/mnist/input_data.py) script to load that dataset.\n", "It is quite useful for managing our data, and handle:\n", "\n", "- Dataset downloading\n", "\n", "- Loading the entire dataset into numpy array: \n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Import MNIST\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)\n", "\n", "# Load data\n", "X_train = mnist.train.images\n", "Y_train = mnist.train.labels\n", "X_test = mnist.test.images\n", "Y_test = mnist.test.labels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- A `next_batch` function that can iterate over the whole dataset and return only the desired fraction of the dataset samples (in order to save memory and avoid to load the entire dataset)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Get the next 64 images array and labels\n", "batch_X, batch_Y = mnist.train.next_batch(64)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Link: http://yann.lecun.com/exdb/mnist/" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 0 }