# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 display_step = 1 #Network Parameters n_hidden_1 = 256 n_hidden_2 = 256 n_input = 784 #MNIST data input n_classes = 10 #MNIST total classes # Create model x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) def multilayer_perceptron(_X, _weights, _biases): layer_1 = tf.nn.relu(tf.matmul(_X, _weights['h1']) + _biases['b1']) #Hidden layer with RELU activation layer_2 = tf.nn.relu(tf.matmul(layer_1, _weights['h2']) + _biases['b2']) #Hidden layer with RELU activation return tf.matmul(layer_2, weights['out']) + biases['out'] weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } pred = multilayer_perceptron(x, weights, biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Train init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test trained model correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})