""" Neural Network with Eager API. A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron) implementation with TensorFlow's Eager API. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/). This example is using TensorFlow layers, see 'neural_network_raw' example for a raw implementation with variables. Links: [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import print_function import tensorflow as tf # Set Eager API tf.enable_eager_execution() tfe = tf.contrib.eager # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) # Parameters learning_rate = 0.001 num_steps = 1000 batch_size = 128 display_step = 100 # Network Parameters n_hidden_1 = 256 # 1st layer number of neurons n_hidden_2 = 256 # 2nd layer number of neurons num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) # Using TF Dataset to split data into batches dataset = tf.data.Dataset.from_tensor_slices( (mnist.train.images, mnist.train.labels)) dataset = dataset.repeat().batch(batch_size).prefetch(batch_size) dataset_iter = tfe.Iterator(dataset) # Define the neural network. To use eager API and tf.layers API together, # we must instantiate a tfe.Network class as follow: class NeuralNet(tfe.Network): def __init__(self): # Define each layer super(NeuralNet, self).__init__() # Hidden fully connected layer with 256 neurons self.layer1 = self.track_layer( tf.layers.Dense(n_hidden_1, activation=tf.nn.relu)) # Hidden fully connected layer with 256 neurons self.layer2 = self.track_layer( tf.layers.Dense(n_hidden_2, activation=tf.nn.relu)) # Output fully connected layer with a neuron for each class self.out_layer = self.track_layer(tf.layers.Dense(num_classes)) def call(self, x): x = self.layer1(x) x = self.layer2(x) return self.out_layer(x) neural_net = NeuralNet() # Cross-Entropy loss function def loss_fn(inference_fn, inputs, labels): # Using sparse_softmax cross entropy return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=inference_fn(inputs), labels=labels)) # Calculate accuracy def accuracy_fn(inference_fn, inputs, labels): prediction = tf.nn.softmax(inference_fn(inputs)) correct_pred = tf.equal(tf.argmax(prediction, 1), labels) return tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # SGD Optimizer optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # Compute gradients grad = tfe.implicit_gradients(loss_fn) # Training average_loss = 0. average_acc = 0. for step in range(num_steps): # Iterate through the dataset d = dataset_iter.next() # Images x_batch = d[0] # Labels y_batch = tf.cast(d[1], dtype=tf.int64) # Compute the batch loss batch_loss = loss_fn(neural_net, x_batch, y_batch) average_loss += batch_loss # Compute the batch accuracy batch_accuracy = accuracy_fn(neural_net, x_batch, y_batch) average_acc += batch_accuracy if step == 0: # Display the initial cost, before optimizing print("Initial loss= {:.9f}".format(average_loss)) # Update the variables following gradients info optimizer.apply_gradients(grad(neural_net, x_batch, y_batch)) # Display info if (step + 1) % display_step == 0 or step == 0: if step > 0: average_loss /= display_step average_acc /= display_step print("Step:", '%04d' % (step + 1), " loss=", "{:.9f}".format(average_loss), " accuracy=", "{:.4f}".format(average_acc)) average_loss = 0. average_acc = 0. # Evaluate model on the test image set testX = mnist.test.images testY = mnist.test.labels test_acc = accuracy_fn(neural_net, testX, testY) print("Testset Accuracy: {:.4f}".format(test_acc))