{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Tensor Operations\n", "\n", "Basic tensor operations using TensorFlow v2.\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Define tensor constants.\n", "a = tf.constant(2)\n", "b = tf.constant(3)\n", "c = tf.constant(5)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "add = 5\n", "sub = -1\n", "mul = 6\n", "div = 0.6666666666666666\n" ] } ], "source": [ "# Various tensor operations.\n", "# Note: Tensors also support python operators (+, *, ...)\n", "add = tf.add(a, b)\n", "sub = tf.subtract(a, b)\n", "mul = tf.multiply(a, b)\n", "div = tf.divide(a, b)\n", "\n", "# Access tensors value.\n", "print(\"add =\", add.numpy())\n", "print(\"sub =\", sub.numpy())\n", "print(\"mul =\", mul.numpy())\n", "print(\"div =\", div.numpy())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean = 3\n", "sum = 10\n" ] } ], "source": [ "# Some more operations.\n", "mean = tf.reduce_mean([a, b, c])\n", "sum = tf.reduce_sum([a, b, c])\n", "\n", "# Access tensors value.\n", "print(\"mean =\", mean.numpy())\n", "print(\"sum =\", sum.numpy())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Matrix multiplications.\n", "matrix1 = tf.constant([[1., 2.], [3., 4.]])\n", "matrix2 = tf.constant([[5., 6.], [7., 8.]])\n", "\n", "product = tf.matmul(matrix1, matrix2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Display Tensor.\n", "product" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[19., 22.],\n", " [43., 50.]], dtype=float32)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Convert Tensor to Numpy.\n", "product.numpy()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15" } }, "nbformat": 4, "nbformat_minor": 2 }