{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic Regression with Eager API\n", "\n", "A logistic regression implemented using TensorFlow's Eager API.\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MNIST Dataset Overview\n", "\n", "This example is using MNIST handwritten digits. The dataset contains 60,000 examples for training and 10,000 examples for testing. The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1. For simplicity, each image has been flattened and converted to a 1-D numpy array of 784 features (28*28).\n", "\n", "![MNIST Dataset](http://neuralnetworksanddeeplearning.com/images/mnist_100_digits.png)\n", "\n", "More info: http://yann.lecun.com/exdb/mnist/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import absolute_import, division, print_function\n", "\n", "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Set Eager API\n", "tf.enable_eager_execution()\n", "tfe = tf.contrib.eager" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "# Import MNIST data\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=False)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.1\n", "batch_size = 128\n", "num_steps = 1000\n", "display_step = 100" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Iterator for the dataset\n", "dataset = tf.data.Dataset.from_tensor_slices(\n", " (mnist.train.images, mnist.train.labels))\n", "dataset = dataset.repeat().batch(batch_size).prefetch(batch_size)\n", "dataset_iter = tfe.Iterator(dataset)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Variables\n", "W = tfe.Variable(tf.zeros([784, 10]), name='weights')\n", "b = tfe.Variable(tf.zeros([10]), name='bias')\n", "\n", "# Logistic regression (Wx + b)\n", "def logistic_regression(inputs):\n", " return tf.matmul(inputs, W) + b\n", "\n", "# Cross-Entropy loss function\n", "def loss_fn(inference_fn, inputs, labels):\n", " # Using sparse_softmax cross entropy\n", " return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(\n", " logits=inference_fn(inputs), labels=labels))\n", "\n", "# Calculate accuracy\n", "def accuracy_fn(inference_fn, inputs, labels):\n", " prediction = tf.nn.softmax(inference_fn(inputs))\n", " correct_pred = tf.equal(tf.argmax(prediction, 1), labels)\n", " return tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# SGD Optimizer\n", "optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", "\n", "# Compute gradients\n", "grad = tfe.implicit_gradients(loss_fn)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initial loss= 2.302584887\n", "Step: 0001 loss= 2.302584887 accuracy= 0.1172\n", "Step: 0100 loss= 0.952338457 accuracy= 0.7955\n", "Step: 0200 loss= 0.535867393 accuracy= 0.8712\n", "Step: 0300 loss= 0.485415280 accuracy= 0.8757\n", "Step: 0400 loss= 0.433947206 accuracy= 0.8843\n", "Step: 0500 loss= 0.381990731 accuracy= 0.8971\n", "Step: 0600 loss= 0.394154936 accuracy= 0.8947\n", "Step: 0700 loss= 0.391497582 accuracy= 0.8905\n", "Step: 0800 loss= 0.386373103 accuracy= 0.8945\n", "Step: 0900 loss= 0.332039326 accuracy= 0.9096\n", "Step: 1000 loss= 0.358993769 accuracy= 0.9002\n" ] } ], "source": [ "# Training\n", "average_loss = 0.\n", "average_acc = 0.\n", "for step in range(num_steps):\n", "\n", " # Iterate through the dataset\n", " d = dataset_iter.next()\n", "\n", " # Images\n", " x_batch = d[0]\n", " # Labels\n", " y_batch = tf.cast(d[1], dtype=tf.int64)\n", "\n", " # Compute the batch loss\n", " batch_loss = loss_fn(logistic_regression, x_batch, y_batch)\n", " average_loss += batch_loss\n", " # Compute the batch accuracy\n", " batch_accuracy = accuracy_fn(logistic_regression, x_batch, y_batch)\n", " average_acc += batch_accuracy\n", "\n", " if step == 0:\n", " # Display the initial cost, before optimizing\n", " print(\"Initial loss= {:.9f}\".format(average_loss))\n", "\n", " # Update the variables following gradients info\n", " optimizer.apply_gradients(grad(logistic_regression, x_batch, y_batch))\n", "\n", " # Display info\n", " if (step + 1) % display_step == 0 or step == 0:\n", " if step > 0:\n", " average_loss /= display_step\n", " average_acc /= display_step\n", " print(\"Step:\", '%04d' % (step + 1), \" loss=\",\n", " \"{:.9f}\".format(average_loss), \" accuracy=\",\n", " \"{:.4f}\".format(average_acc))\n", " average_loss = 0.\n", " average_acc = 0." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Testset Accuracy: 0.9083\n" ] } ], "source": [ "# Evaluate model on the test image set\n", "testX = mnist.test.images\n", "testY = mnist.test.labels\n", "\n", "test_acc = accuracy_fn(logistic_regression, testX, testY)\n", "print(\"Testset Accuracy: {:.4f}\".format(test_acc))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 1 }