# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1 # Create model x = tf.placeholder("float", [None, 784]) y = tf.placeholder("float", [None,10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) activation = tf.nn.softmax(tf.matmul(x,W) + b) #softmax cost = -tf.reduce_sum(y*tf.log(activation)) #cross entropy optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Train init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test trained model correct_prediction = tf.equal(tf.argmax(activation,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})