{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "'''\n", "A Reccurent Neural Network (LSTM) implementation example using TensorFlow library.\n", "This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)\n", "Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf\n", "\n", "Author: Aymeric Damien\n", "Project: https://github.com/aymericdamien/TensorFlow-Examples/\n", "'''" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow.contrib import rnn\n", "import numpy as np\n", "\n", "# Import MINST data\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "'''\n", "To classify images using a reccurent neural network, we consider every image\n", "row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then\n", "handle 28 sequences of 28 steps for every sample.\n", "'''" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.001\n", "training_iters = 100000\n", "batch_size = 128\n", "display_step = 10\n", "\n", "# Network Parameters\n", "n_input = 28 # MNIST data input (img shape: 28*28)\n", "n_steps = 28 # timesteps\n", "n_hidden = 128 # hidden layer num of features\n", "n_classes = 10 # MNIST total classes (0-9 digits)\n", "\n", "# tf Graph input\n", "x = tf.placeholder(\"float\", [None, n_steps, n_input])\n", "y = tf.placeholder(\"float\", [None, n_classes])\n", "\n", "# Define weights\n", "weights = {\n", " 'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))\n", "}\n", "biases = {\n", " 'out': tf.Variable(tf.random_normal([n_classes]))\n", "}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def RNN(x, weights, biases):\n", "\n", " # Prepare data shape to match `rnn` function requirements\n", " # Current data input shape: (batch_size, n_steps, n_input)\n", " # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)\n", " \n", " # Permuting batch_size and n_steps\n", " x = tf.transpose(x, [1, 0, 2])\n", " # Reshaping to (n_steps*batch_size, n_input)\n", " x = tf.reshape(x, [-1, n_input])\n", " # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)\n", " x = tf.split(x, n_steps, 0)\n", "\n", " # Define a lstm cell with tensorflow\n", " lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)\n", "\n", " # Get lstm cell output\n", " outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)\n", "\n", " # Linear activation, using rnn inner loop last output\n", " return tf.matmul(outputs[-1], weights['out']) + biases['out']\n", "\n", "pred = RNN(x, weights, biases)\n", "\n", "# Define loss and optimizer\n", "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n", "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n", "\n", "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n", "\n", "# Initializing the variables\n", "init = tf.global_variables_initializer()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iter 1280, Minibatch Loss= 1.576423, Training Accuracy= 0.51562\n", "Iter 2560, Minibatch Loss= 1.450179, Training Accuracy= 0.53906\n", "Iter 3840, Minibatch Loss= 1.160066, Training Accuracy= 0.64844\n", "Iter 5120, Minibatch Loss= 0.898589, Training Accuracy= 0.73438\n", "Iter 6400, Minibatch Loss= 0.685712, Training Accuracy= 0.75781\n", "Iter 7680, Minibatch Loss= 1.085666, Training Accuracy= 0.64844\n", "Iter 8960, Minibatch Loss= 0.681488, Training Accuracy= 0.73438\n", "Iter 10240, Minibatch Loss= 0.557049, Training Accuracy= 0.82812\n", "Iter 11520, Minibatch Loss= 0.340857, Training Accuracy= 0.92188\n", "Iter 12800, Minibatch Loss= 0.596482, Training Accuracy= 0.78906\n", "Iter 14080, Minibatch Loss= 0.486564, Training Accuracy= 0.84375\n", "Iter 15360, Minibatch Loss= 0.302493, Training Accuracy= 0.90625\n", "Iter 16640, Minibatch Loss= 0.334277, Training Accuracy= 0.92188\n", "Iter 17920, Minibatch Loss= 0.222026, Training Accuracy= 0.90625\n", "Iter 19200, Minibatch Loss= 0.228581, Training Accuracy= 0.92188\n", "Iter 20480, Minibatch Loss= 0.150356, Training Accuracy= 0.96094\n", "Iter 21760, Minibatch Loss= 0.415417, Training Accuracy= 0.86719\n", "Iter 23040, Minibatch Loss= 0.159742, Training Accuracy= 0.94531\n", "Iter 24320, Minibatch Loss= 0.333764, Training Accuracy= 0.89844\n", "Iter 25600, Minibatch Loss= 0.379070, Training Accuracy= 0.88281\n", "Iter 26880, Minibatch Loss= 0.241612, Training Accuracy= 0.91406\n", "Iter 28160, Minibatch Loss= 0.200397, Training Accuracy= 0.93750\n", "Iter 29440, Minibatch Loss= 0.197994, Training Accuracy= 0.93750\n", "Iter 30720, Minibatch Loss= 0.330214, Training Accuracy= 0.89062\n", "Iter 32000, Minibatch Loss= 0.174626, Training Accuracy= 0.92969\n", "Iter 33280, Minibatch Loss= 0.202369, Training Accuracy= 0.93750\n", "Iter 34560, Minibatch Loss= 0.240835, Training Accuracy= 0.94531\n", "Iter 35840, Minibatch Loss= 0.207867, Training Accuracy= 0.93750\n", "Iter 37120, Minibatch Loss= 0.313306, Training Accuracy= 0.90625\n", "Iter 38400, Minibatch Loss= 0.089850, Training Accuracy= 0.96875\n", "Iter 39680, Minibatch Loss= 0.184803, Training Accuracy= 0.92188\n", "Iter 40960, Minibatch Loss= 0.236523, Training Accuracy= 0.92969\n", "Iter 42240, Minibatch Loss= 0.174834, Training Accuracy= 0.94531\n", "Iter 43520, Minibatch Loss= 0.127905, Training Accuracy= 0.93750\n", "Iter 44800, Minibatch Loss= 0.120045, Training Accuracy= 0.96875\n", "Iter 46080, Minibatch Loss= 0.068337, Training Accuracy= 0.98438\n", "Iter 47360, Minibatch Loss= 0.141118, Training Accuracy= 0.95312\n", "Iter 48640, Minibatch Loss= 0.182404, Training Accuracy= 0.92188\n", "Iter 49920, Minibatch Loss= 0.176778, Training Accuracy= 0.93750\n", "Iter 51200, Minibatch Loss= 0.098927, Training Accuracy= 0.97656\n", "Iter 52480, Minibatch Loss= 0.158776, Training Accuracy= 0.96094\n", "Iter 53760, Minibatch Loss= 0.031863, Training Accuracy= 0.99219\n", "Iter 55040, Minibatch Loss= 0.101799, Training Accuracy= 0.96094\n", "Iter 56320, Minibatch Loss= 0.176387, Training Accuracy= 0.96094\n", "Iter 57600, Minibatch Loss= 0.096277, Training Accuracy= 0.96875\n", "Iter 58880, Minibatch Loss= 0.137416, Training Accuracy= 0.94531\n", "Iter 60160, Minibatch Loss= 0.062801, Training Accuracy= 0.97656\n", "Iter 61440, Minibatch Loss= 0.036346, Training Accuracy= 0.98438\n", "Iter 62720, Minibatch Loss= 0.153030, Training Accuracy= 0.92969\n", "Iter 64000, Minibatch Loss= 0.117716, Training Accuracy= 0.95312\n", "Iter 65280, Minibatch Loss= 0.048387, Training Accuracy= 0.99219\n", "Iter 66560, Minibatch Loss= 0.070802, Training Accuracy= 0.97656\n", "Iter 67840, Minibatch Loss= 0.221085, Training Accuracy= 0.96875\n", "Iter 69120, Minibatch Loss= 0.184049, Training Accuracy= 0.93750\n", "Iter 70400, Minibatch Loss= 0.094883, Training Accuracy= 0.95312\n", "Iter 71680, Minibatch Loss= 0.087278, Training Accuracy= 0.96875\n", "Iter 72960, Minibatch Loss= 0.153267, Training Accuracy= 0.95312\n", "Iter 74240, Minibatch Loss= 0.161794, Training Accuracy= 0.94531\n", "Iter 75520, Minibatch Loss= 0.103779, Training Accuracy= 0.96875\n", "Iter 76800, Minibatch Loss= 0.165586, Training Accuracy= 0.96094\n", "Iter 78080, Minibatch Loss= 0.137721, Training Accuracy= 0.95312\n", "Iter 79360, Minibatch Loss= 0.124014, Training Accuracy= 0.96094\n", "Iter 80640, Minibatch Loss= 0.051460, Training Accuracy= 0.99219\n", "Iter 81920, Minibatch Loss= 0.185836, Training Accuracy= 0.96094\n", "Iter 83200, Minibatch Loss= 0.147694, Training Accuracy= 0.94531\n", "Iter 84480, Minibatch Loss= 0.061550, Training Accuracy= 0.98438\n", "Iter 85760, Minibatch Loss= 0.093457, Training Accuracy= 0.96875\n", "Iter 87040, Minibatch Loss= 0.094497, Training Accuracy= 0.98438\n", "Iter 88320, Minibatch Loss= 0.093934, Training Accuracy= 0.96094\n", "Iter 89600, Minibatch Loss= 0.061550, Training Accuracy= 0.96875\n", "Iter 90880, Minibatch Loss= 0.082452, Training Accuracy= 0.97656\n", "Iter 92160, Minibatch Loss= 0.087423, Training Accuracy= 0.97656\n", "Iter 93440, Minibatch Loss= 0.032694, Training Accuracy= 0.99219\n", "Iter 94720, Minibatch Loss= 0.069597, Training Accuracy= 0.97656\n", "Iter 96000, Minibatch Loss= 0.193636, Training Accuracy= 0.96094\n", "Iter 97280, Minibatch Loss= 0.134405, Training Accuracy= 0.96094\n", "Iter 98560, Minibatch Loss= 0.072992, Training Accuracy= 0.96875\n", "Iter 99840, Minibatch Loss= 0.041049, Training Accuracy= 0.99219\n", "Optimization Finished!\n", "Testing Accuracy: 0.960938\n" ] } ], "source": [ "# Launch the graph\n", "with tf.Session() as sess:\n", " sess.run(init)\n", " step = 1\n", " # Keep training until reach max iterations\n", " while step * batch_size < training_iters:\n", " batch_x, batch_y = mnist.train.next_batch(batch_size)\n", " # Reshape data to get 28 seq of 28 elements\n", " batch_x = batch_x.reshape((batch_size, n_steps, n_input))\n", " # Run optimization op (backprop)\n", " sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})\n", " if step % display_step == 0:\n", " # Calculate batch accuracy\n", " acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})\n", " # Calculate batch loss\n", " loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})\n", " print \"Iter \" + str(step*batch_size) + \", Minibatch Loss= \" + \\\n", " \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \\\n", " \"{:.5f}\".format(acc)\n", " step += 1\n", " print \"Optimization Finished!\"\n", "\n", " # Calculate accuracy for 128 mnist test images\n", " test_len = 128\n", " test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))\n", " test_label = mnist.test.labels[:test_len]\n", " print \"Testing Accuracy:\", \\\n", " sess.run(accuracy, feed_dict={x: test_data, y: test_label})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 0 }