{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Logistic Regression Example\n", "\n", "A logistic regression learning algorithm example using TensorFlow library.\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MNIST Dataset Overview\n", "\n", "This example is using MNIST handwritten digits. The dataset contains 60,000 examples for training and 10,000 examples for testing. The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1. For simplicity, each image has been flattened and converted to a 1-D numpy array of 784 features (28*28).\n", "\n", "![MNIST Dataset](http://neuralnetworksanddeeplearning.com/images/mnist_100_digits.png)\n", "\n", "More info: http://yann.lecun.com/exdb/mnist/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "import tensorflow as tf\n", "\n", "# Import MINST data\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.01\n", "training_epochs = 25\n", "batch_size = 100\n", "display_step = 1\n", "\n", "# tf Graph Input\n", "x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784\n", "y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes\n", "\n", "# Set model weights\n", "W = tf.Variable(tf.zeros([784, 10]))\n", "b = tf.Variable(tf.zeros([10]))\n", "\n", "# Construct model\n", "pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax\n", "\n", "# Minimize error using cross entropy\n", "cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))\n", "# Gradient Descent\n", "optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n", "\n", "# Initialize the variables (i.e. assign their default value)\n", "init = tf.global_variables_initializer()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch: 0001 cost= 1.182138959\n", "Epoch: 0002 cost= 0.664778162\n", "Epoch: 0003 cost= 0.552686284\n", "Epoch: 0004 cost= 0.498628905\n", "Epoch: 0005 cost= 0.465469866\n", "Epoch: 0006 cost= 0.442537872\n", "Epoch: 0007 cost= 0.425462044\n", "Epoch: 0008 cost= 0.412185303\n", "Epoch: 0009 cost= 0.401311587\n", "Epoch: 0010 cost= 0.392326203\n", "Epoch: 0011 cost= 0.384736038\n", "Epoch: 0012 cost= 0.378137191\n", "Epoch: 0013 cost= 0.372363752\n", "Epoch: 0014 cost= 0.367308579\n", "Epoch: 0015 cost= 0.362704660\n", "Epoch: 0016 cost= 0.358588599\n", "Epoch: 0017 cost= 0.354823110\n" ] } ], "source": [ "# Start training\n", "with tf.Session() as sess:\n", " sess.run(init)\n", "\n", " # Training cycle\n", " for epoch in range(training_epochs):\n", " avg_cost = 0.\n", " total_batch = int(mnist.train.num_examples/batch_size)\n", " # Loop over all batches\n", " for i in range(total_batch):\n", " batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n", " # Fit training using batch data\n", " _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,\n", " y: batch_ys})\n", " # Compute average loss\n", " avg_cost += c / total_batch\n", " # Display logs per epoch step\n", " if (epoch+1) % display_step == 0:\n", " print \"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost)\n", "\n", " print \"Optimization Finished!\"\n", "\n", " # Test model\n", " correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n", " # Calculate accuracy for 3000 examples\n", " accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))\n", " print \"Accuracy:\", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }