{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tensorboard Advanced\n", "\n", "Advanced visualization using Tensorboard (weights, gradient, ...). This example is using the MNIST database of handwritten digits\n", "(http://yann.lecun.com/exdb/mnist/).\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "from __future__ import print_function\n", "\n", "import tensorflow as tf\n", "\n", "# Import MNIST data\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.01\n", "training_epochs = 25\n", "batch_size = 100\n", "display_step = 1\n", "logs_path = '/tmp/tensorflow_logs/example/'\n", "\n", "# Network Parameters\n", "n_hidden_1 = 256 # 1st layer number of features\n", "n_hidden_2 = 256 # 2nd layer number of features\n", "n_input = 784 # MNIST data input (img shape: 28*28)\n", "n_classes = 10 # MNIST total classes (0-9 digits)\n", "\n", "# tf Graph Input\n", "# mnist data image of shape 28*28=784\n", "x = tf.placeholder(tf.float32, [None, 784], name='InputData')\n", "# 0-9 digits recognition => 10 classes\n", "y = tf.placeholder(tf.float32, [None, 10], name='LabelData')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create model\n", "def multilayer_perceptron(x, weights, biases):\n", " # Hidden layer with RELU activation\n", " layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])\n", " layer_1 = tf.nn.relu(layer_1)\n", " # Create a summary to visualize the first layer ReLU activation\n", " tf.summary.histogram(\"relu1\", layer_1)\n", " # Hidden layer with RELU activation\n", " layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])\n", " layer_2 = tf.nn.relu(layer_2)\n", " # Create another summary to visualize the second layer ReLU activation\n", " tf.summary.histogram(\"relu2\", layer_2)\n", " # Output layer\n", " out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])\n", " return out_layer\n", "\n", "# Store layers weight & bias\n", "weights = {\n", " 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'),\n", " 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'),\n", " 'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3')\n", "}\n", "biases = {\n", " 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'),\n", " 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'),\n", " 'b3': tf.Variable(tf.random_normal([n_classes]), name='b3')\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Encapsulating all ops into scopes, making Tensorboard's Graph\n", "# Visualization more convenient\n", "with tf.name_scope('Model'):\n", " # Build model\n", " pred = multilayer_perceptron(x, weights, biases)\n", "\n", "with tf.name_scope('Loss'):\n", " # Softmax Cross entropy (cost function)\n", " loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n", "\n", "with tf.name_scope('SGD'):\n", " # Gradient Descent\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n", " # Op to calculate every variable gradient\n", " grads = tf.gradients(loss, tf.trainable_variables())\n", " grads = list(zip(grads, tf.trainable_variables()))\n", " # Op to update all variables according to their gradient\n", " apply_grads = optimizer.apply_gradients(grads_and_vars=grads)\n", "\n", "with tf.name_scope('Accuracy'):\n", " # Accuracy\n", " acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n", " acc = tf.reduce_mean(tf.cast(acc, tf.float32))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Initialize the variables (i.e. assign their default value)\n", "init = tf.global_variables_initializer()\n", "\n", "# Create a summary to monitor cost tensor\n", "tf.summary.scalar(\"loss\", loss)\n", "# Create a summary to monitor accuracy tensor\n", "tf.summary.scalar(\"accuracy\", acc)\n", "# Create summaries to visualize weights\n", "for var in tf.trainable_variables():\n", " tf.summary.histogram(var.name, var)\n", "# Summarize all gradients\n", "for grad, var in grads:\n", " tf.summary.histogram(var.name + '/gradient', grad)\n", "# Merge all summaries into a single op\n", "merged_summary_op = tf.summary.merge_all()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch: 0001 cost= 59.570364205\n", "Epoch: 0002 cost= 13.585465186\n", "Epoch: 0003 cost= 8.379069252\n", "Epoch: 0004 cost= 6.005265894\n", "Epoch: 0005 cost= 4.498054792\n", "Epoch: 0006 cost= 3.503682522\n", "Epoch: 0007 cost= 2.822272765\n", "Epoch: 0008 cost= 2.306899852\n", "Epoch: 0009 cost= 1.912765543\n", "Epoch: 0010 cost= 1.597006118\n", "Epoch: 0011 cost= 1.330172869\n", "Epoch: 0012 cost= 1.142490618\n", "Epoch: 0013 cost= 0.939443911\n", "Epoch: 0014 cost= 0.820920588\n", "Epoch: 0015 cost= 0.702543302\n", "Epoch: 0016 cost= 0.604815631\n", "Epoch: 0017 cost= 0.505682561\n", "Epoch: 0018 cost= 0.439700446\n", "Epoch: 0019 cost= 0.378268929\n", "Epoch: 0020 cost= 0.299557848\n", "Epoch: 0021 cost= 0.269859066\n", "Epoch: 0022 cost= 0.230899029\n", "Epoch: 0023 cost= 0.183722090\n", "Epoch: 0024 cost= 0.164173368\n", "Epoch: 0025 cost= 0.142141250\n", "Optimization Finished!\n", "Accuracy: 0.9336\n", "Run the command line:\n", "--> tensorboard --logdir=/tmp/tensorflow_logs \n", "Then open http://0.0.0.0:6006/ into your web browser\n" ] } ], "source": [ "# Start training\n", "with tf.Session() as sess:\n", "\n", " # Run the initializer\n", " sess.run(init)\n", "\n", " # op to write logs to Tensorboard\n", " summary_writer = tf.summary.FileWriter(logs_path,\n", " graph=tf.get_default_graph())\n", "\n", " # Training cycle\n", " for epoch in range(training_epochs):\n", " avg_cost = 0.\n", " total_batch = int(mnist.train.num_examples/batch_size)\n", " # Loop over all batches\n", " for i in range(total_batch):\n", " batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n", " # Run optimization op (backprop), cost op (to get loss value)\n", " # and summary nodes\n", " _, c, summary = sess.run([apply_grads, loss, merged_summary_op],\n", " feed_dict={x: batch_xs, y: batch_ys})\n", " # Write logs at every iteration\n", " summary_writer.add_summary(summary, epoch * total_batch + i)\n", " # Compute average loss\n", " avg_cost += c / total_batch\n", " # Display logs per epoch step\n", " if (epoch+1) % display_step == 0:\n", " print(\"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost))\n", "\n", " print(\"Optimization Finished!\")\n", "\n", " # Test model\n", " # Calculate accuracy\n", " print(\"Accuracy:\", acc.eval({x: mnist.test.images, y: mnist.test.labels}))\n", "\n", " print(\"Run the command line:\\n\" \\\n", " \"--> tensorboard --logdir=/tmp/tensorflow_logs \" \\\n", " \"\\nThen open http://0.0.0.0:6006/ into your web browser\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Loss and Accuracy Visualization\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Computation Graph Visualization\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Weights and Gradients Visualization\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Activations Visualization\n", "" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }