{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tensorboard Advanced\n",
"\n",
"Advanced visualization using Tensorboard (weights, gradient, ...). This example is using the MNIST database of handwritten digits\n",
"(http://yann.lecun.com/exdb/mnist/).\n",
"\n",
"- Author: Aymeric Damien\n",
"- Project: https://github.com/aymericdamien/TensorFlow-Examples/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"from __future__ import print_function\n",
"\n",
"import tensorflow as tf\n",
"\n",
"# Import MNIST data\n",
"from tensorflow.examples.tutorials.mnist import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Parameters\n",
"learning_rate = 0.01\n",
"training_epochs = 25\n",
"batch_size = 100\n",
"display_step = 1\n",
"logs_path = '/tmp/tensorflow_logs/example/'\n",
"\n",
"# Network Parameters\n",
"n_hidden_1 = 256 # 1st layer number of features\n",
"n_hidden_2 = 256 # 2nd layer number of features\n",
"n_input = 784 # MNIST data input (img shape: 28*28)\n",
"n_classes = 10 # MNIST total classes (0-9 digits)\n",
"\n",
"# tf Graph Input\n",
"# mnist data image of shape 28*28=784\n",
"x = tf.placeholder(tf.float32, [None, 784], name='InputData')\n",
"# 0-9 digits recognition => 10 classes\n",
"y = tf.placeholder(tf.float32, [None, 10], name='LabelData')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create model\n",
"def multilayer_perceptron(x, weights, biases):\n",
" # Hidden layer with RELU activation\n",
" layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])\n",
" layer_1 = tf.nn.relu(layer_1)\n",
" # Create a summary to visualize the first layer ReLU activation\n",
" tf.summary.histogram(\"relu1\", layer_1)\n",
" # Hidden layer with RELU activation\n",
" layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])\n",
" layer_2 = tf.nn.relu(layer_2)\n",
" # Create another summary to visualize the second layer ReLU activation\n",
" tf.summary.histogram(\"relu2\", layer_2)\n",
" # Output layer\n",
" out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])\n",
" return out_layer\n",
"\n",
"# Store layers weight & bias\n",
"weights = {\n",
" 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'),\n",
" 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'),\n",
" 'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3')\n",
"}\n",
"biases = {\n",
" 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'),\n",
" 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'),\n",
" 'b3': tf.Variable(tf.random_normal([n_classes]), name='b3')\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Encapsulating all ops into scopes, making Tensorboard's Graph\n",
"# Visualization more convenient\n",
"with tf.name_scope('Model'):\n",
" # Build model\n",
" pred = multilayer_perceptron(x, weights, biases)\n",
"\n",
"with tf.name_scope('Loss'):\n",
" # Softmax Cross entropy (cost function)\n",
" loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n",
"\n",
"with tf.name_scope('SGD'):\n",
" # Gradient Descent\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n",
" # Op to calculate every variable gradient\n",
" grads = tf.gradients(loss, tf.trainable_variables())\n",
" grads = list(zip(grads, tf.trainable_variables()))\n",
" # Op to update all variables according to their gradient\n",
" apply_grads = optimizer.apply_gradients(grads_and_vars=grads)\n",
"\n",
"with tf.name_scope('Accuracy'):\n",
" # Accuracy\n",
" acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
" acc = tf.reduce_mean(tf.cast(acc, tf.float32))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Initialize the variables (i.e. assign their default value)\n",
"init = tf.global_variables_initializer()\n",
"\n",
"# Create a summary to monitor cost tensor\n",
"tf.summary.scalar(\"loss\", loss)\n",
"# Create a summary to monitor accuracy tensor\n",
"tf.summary.scalar(\"accuracy\", acc)\n",
"# Create summaries to visualize weights\n",
"for var in tf.trainable_variables():\n",
" tf.summary.histogram(var.name, var)\n",
"# Summarize all gradients\n",
"for grad, var in grads:\n",
" tf.summary.histogram(var.name + '/gradient', grad)\n",
"# Merge all summaries into a single op\n",
"merged_summary_op = tf.summary.merge_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 0001 cost= 59.570364205\n",
"Epoch: 0002 cost= 13.585465186\n",
"Epoch: 0003 cost= 8.379069252\n",
"Epoch: 0004 cost= 6.005265894\n",
"Epoch: 0005 cost= 4.498054792\n",
"Epoch: 0006 cost= 3.503682522\n",
"Epoch: 0007 cost= 2.822272765\n",
"Epoch: 0008 cost= 2.306899852\n",
"Epoch: 0009 cost= 1.912765543\n",
"Epoch: 0010 cost= 1.597006118\n",
"Epoch: 0011 cost= 1.330172869\n",
"Epoch: 0012 cost= 1.142490618\n",
"Epoch: 0013 cost= 0.939443911\n",
"Epoch: 0014 cost= 0.820920588\n",
"Epoch: 0015 cost= 0.702543302\n",
"Epoch: 0016 cost= 0.604815631\n",
"Epoch: 0017 cost= 0.505682561\n",
"Epoch: 0018 cost= 0.439700446\n",
"Epoch: 0019 cost= 0.378268929\n",
"Epoch: 0020 cost= 0.299557848\n",
"Epoch: 0021 cost= 0.269859066\n",
"Epoch: 0022 cost= 0.230899029\n",
"Epoch: 0023 cost= 0.183722090\n",
"Epoch: 0024 cost= 0.164173368\n",
"Epoch: 0025 cost= 0.142141250\n",
"Optimization Finished!\n",
"Accuracy: 0.9336\n",
"Run the command line:\n",
"--> tensorboard --logdir=/tmp/tensorflow_logs \n",
"Then open http://0.0.0.0:6006/ into your web browser\n"
]
}
],
"source": [
"# Start training\n",
"with tf.Session() as sess:\n",
"\n",
" # Run the initializer\n",
" sess.run(init)\n",
"\n",
" # op to write logs to Tensorboard\n",
" summary_writer = tf.summary.FileWriter(logs_path,\n",
" graph=tf.get_default_graph())\n",
"\n",
" # Training cycle\n",
" for epoch in range(training_epochs):\n",
" avg_cost = 0.\n",
" total_batch = int(mnist.train.num_examples/batch_size)\n",
" # Loop over all batches\n",
" for i in range(total_batch):\n",
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
" # Run optimization op (backprop), cost op (to get loss value)\n",
" # and summary nodes\n",
" _, c, summary = sess.run([apply_grads, loss, merged_summary_op],\n",
" feed_dict={x: batch_xs, y: batch_ys})\n",
" # Write logs at every iteration\n",
" summary_writer.add_summary(summary, epoch * total_batch + i)\n",
" # Compute average loss\n",
" avg_cost += c / total_batch\n",
" # Display logs per epoch step\n",
" if (epoch+1) % display_step == 0:\n",
" print(\"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost))\n",
"\n",
" print(\"Optimization Finished!\")\n",
"\n",
" # Test model\n",
" # Calculate accuracy\n",
" print(\"Accuracy:\", acc.eval({x: mnist.test.images, y: mnist.test.labels}))\n",
"\n",
" print(\"Run the command line:\\n\" \\\n",
" \"--> tensorboard --logdir=/tmp/tensorflow_logs \" \\\n",
" \"\\nThen open http://0.0.0.0:6006/ into your web browser\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loss and Accuracy Visualization\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Computation Graph Visualization\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Weights and Gradients Visualization\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Activations Visualization\n",
"
"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}