""" Neural Network. A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron) implementation with TensorFlow. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/). This example is using TensorFlow layers, see 'neural_network_raw' example for a raw implementation with variables. Links: [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import print_function # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) import tensorflow as tf # Parameters learning_rate = 0.1 num_steps = 1000 batch_size = 128 display_step = 100 # Network Parameters n_hidden_1 = 256 # 1st layer number of neurons n_hidden_2 = 256 # 2nd layer number of neurons num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) # Define the neural network def neural_net(x_dict): # TF Estimator input is a dict, in case of multiple inputs x = x_dict['images'] # Hidden fully connected layer with 256 neurons layer_1 = tf.layers.dense(x, n_hidden_1) # Hidden fully connected layer with 256 neurons layer_2 = tf.layers.dense(layer_1, n_hidden_2) # Output fully connected layer with a neuron for each class out_layer = tf.layers.dense(layer_2, num_classes) return out_layer # Define the model function (following TF Estimator Template) def model_fn(features, labels, mode): # Build the neural network logits = neural_net(features) # Predictions pred_classes = tf.argmax(logits, axis=1) pred_probas = tf.nn.softmax(logits) # If prediction mode, early return if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) # Define loss and optimizer loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.cast(labels, dtype=tf.int32))) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) # Evaluate the accuracy of the model acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) # TF Estimators requires to return a EstimatorSpec, that specify # the different ops for training, evaluating, ... estim_specs = tf.estimator.EstimatorSpec( mode=mode, predictions=pred_classes, loss=loss_op, train_op=train_op, eval_metric_ops={'accuracy': acc_op}) return estim_specs # Build the Estimator model = tf.estimator.Estimator(model_fn) # Define the input function for training input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.train.images}, y=mnist.train.labels, batch_size=batch_size, num_epochs=None, shuffle=True) # Train the Model model.train(input_fn, steps=num_steps) # Evaluate the Model # Define the input function for evaluating input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.test.images}, y=mnist.test.labels, batch_size=batch_size, shuffle=False) # Use the Estimator 'evaluate' method e = model.evaluate(input_fn) print("Testing Accuracy:", e['accuracy'])