""" Random Forest. Implement Random Forest algorithm with TensorFlow, and apply it to classify handwritten digit images. This example is using the MNIST database of handwritten digits as training samples (http://yann.lecun.com/exdb/mnist/). Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import print_function import tensorflow as tf from tensorflow.contrib.tensor_forest.python import tensor_forest # Ignore all GPUs, tf random forest does not benefit from it. import os os.environ["CUDA_VISIBLE_DEVICES"] = "" # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) # Parameters num_steps = 500 # Total steps to train batch_size = 1024 # The number of samples per batch num_classes = 10 # The 10 digits num_features = 784 # Each image is 28x28 pixels num_trees = 10 max_nodes = 1000 # Input and Target data X = tf.placeholder(tf.float32, shape=[None, num_features]) # For random forest, labels must be integers (the class id) Y = tf.placeholder(tf.int32, shape=[None]) # Random Forest Parameters hparams = tensor_forest.ForestHParams(num_classes=num_classes, num_features=num_features, num_trees=num_trees, max_nodes=max_nodes).fill() # Build the Random Forest forest_graph = tensor_forest.RandomForestGraphs(hparams) # Get training graph and loss train_op = forest_graph.training_graph(X, Y) loss_op = forest_graph.training_loss(X, Y) # Measure the accuracy infer_op, _, _ = forest_graph.inference_graph(X) correct_prediction = tf.equal(tf.argmax(infer_op, 1), tf.cast(Y, tf.int64)) accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Initialize the variables (i.e. assign their default value) init_vars = tf.global_variables_initializer() # Start TensorFlow session sess = tf.train.MonitoredSession() # Run the initializer sess.run(init_vars) # Training for i in range(1, num_steps + 1): # Prepare Data # Get the next batch of MNIST data (only images are needed, not labels) batch_x, batch_y = mnist.train.next_batch(batch_size) _, l = sess.run([train_op, loss_op], feed_dict={X: batch_x, Y: batch_y}) if i % 50 == 0 or i == 1: acc = sess.run(accuracy_op, feed_dict={X: batch_x, Y: batch_y}) print('Step %i, Loss: %f, Acc: %f' % (i, l, acc)) # Test Model test_x, test_y = mnist.test.images, mnist.test.labels print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: test_x, Y: test_y}))