# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 10 #Network Parameters n_input = 784 #MNIST data input n_classes = 10 #MNIST total classes dropout = 0.75 # Create model x = tf.placeholder(tf.types.float32, [None, n_input]) y = tf.placeholder(tf.types.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.types.float32) #dropout def conv2d(img, w, b): return tf.nn.relu(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME') + b) def max_pool(img, k): return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') def conv_net(_X, _weights, _biases, _dropout): _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) conv1 = conv2d(_X, _weights['wc1'], _biases['bc1']) conv1 = max_pool(conv1, k=2) conv1 = tf.nn.dropout(conv1, _dropout) conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2']) conv2 = max_pool(conv2, k=2) conv2 = tf.nn.dropout(conv2, _dropout) dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1']) dense1 = tf.nn.dropout(dense1, _dropout) out = tf.matmul(dense1, _weights['out']) + _biases['out'] return out weights = { 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), 'out': tf.Variable(tf.random_normal([1024, 10])) } biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) } pred = conv_net(x, weights, biases, keep_prob) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) #Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32)) # Train #load mnist data init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) step = 1 avg_cost = 0. while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})/batch_size print "Iter", str(step*batch_size), "cost=", "{:.9f}".format(avg_cost/step) step += 1 print "Optimization Finished!" #Accuracy on 256 mnist test images print "Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})