import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random # Parameters learning_rate = 0.01 training_epochs = 2000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) # Create Model W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") X = tf.placeholder("float") Y = tf.placeholder("float") n_samples = train_X.shape[0] activation = tf.add(tf.mul(X, W), b) #linear cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \ "W=", sess.run(W), "b=", sess.run(b) print "Optimization Finished!" print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b) plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()