123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- '''
- Loss Visualization with TensorFlow.
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- import tensorflow as tf
- import numpy
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Use Logistic Regression from our previous example
- # Parameters
- learning_rate = 0.01
- training_epochs = 10
- batch_size = 100
- display_step = 1
- # tf Graph Input
- x = tf.placeholder("float", [None, 784], name='x') # mnist data image of shape 28*28=784
- y = tf.placeholder("float", [None, 10], name='y') # 0-9 digits recognition => 10 classes
- # Create model
- # Set model weights
- W = tf.Variable(tf.zeros([784, 10]), name="weights")
- b = tf.Variable(tf.zeros([10]), name="bias")
- # Construct model
- activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
- # Minimize error using cross entropy
- cost = -tf.reduce_sum(y*tf.log(activation)) # Cross entropy
- optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Create a summary to monitor cost function
- tf.scalar_summary("loss", cost)
- # Merge all summaries to a single operator
- merged_summary_op = tf.merge_all_summaries()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # Set logs writer into folder /tmp/tensorflow_logs
- summary_writer = tf.train.SummaryWriter('/tmp/tensorflow_logs', graph_def=sess.graph_def)
- # Training cycle
- for epoch in range(training_epochs):
- avg_cost = 0.
- total_batch = int(mnist.train.num_examples/batch_size)
- # Loop over all batches
- for i in range(total_batch):
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Fit training using batch data
- sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
- # Compute average loss
- avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
- # Write logs at every iteration
- summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
- summary_writer.add_summary(summary_str, epoch*total_batch + i)
- # Display logs per epoch step
- if epoch % display_step == 0:
- print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
- print "Optimization Finished!"
- # Test model
- correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))
- # Calculate accuracy
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
- '''
- Run the command line: tensorboard --logdir=/tmp/tensorflow_logs
- Open http://localhost:6006/ into your web browser
- '''
|