123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- '''
- AlexNet implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
- AlexNet Paper (http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- # Parameters
- learning_rate = 0.001
- training_iters = 200000
- batch_size = 64
- display_step = 20
- # Network Parameters
- n_input = 784 # MNIST data input (img shape: 28*28)
- n_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.8 # Dropout, probability to keep units
- # tf Graph input
- x = tf.placeholder(tf.float32, [None, n_input])
- y = tf.placeholder(tf.float32, [None, n_classes])
- keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
- # Create AlexNet model
- def conv2d(name, l_input, w, b):
- return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
- def max_pool(name, l_input, k):
- return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
- def norm(name, l_input, lsize=4):
- return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
- def alex_net(_X, _weights, _biases, _dropout):
- # Reshape input picture
- _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
- # Convolution Layer
- conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
- # Max Pooling (down-sampling)
- pool1 = max_pool('pool1', conv1, k=2)
- # Apply Normalization
- norm1 = norm('norm1', pool1, lsize=4)
- # Apply Dropout
- norm1 = tf.nn.dropout(norm1, _dropout)
- # Convolution Layer
- conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
- # Max Pooling (down-sampling)
- pool2 = max_pool('pool2', conv2, k=2)
- # Apply Normalization
- norm2 = norm('norm2', pool2, lsize=4)
- # Apply Dropout
- norm2 = tf.nn.dropout(norm2, _dropout)
- # Convolution Layer
- conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
- # Max Pooling (down-sampling)
- pool3 = max_pool('pool3', conv3, k=2)
- # Apply Normalization
- norm3 = norm('norm3', pool3, lsize=4)
- # Apply Dropout
- norm3 = tf.nn.dropout(norm3, _dropout)
- # Fully connected layer
- dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input
- dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') # Relu activation
- dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
- # Output, class prediction
- out = tf.matmul(dense2, _weights['out']) + _biases['out']
- return out
- # Store layers weight & bias
- weights = {
- 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
- 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
- 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
- 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
- 'wd2': tf.Variable(tf.random_normal([1024, 1024])),
- 'out': tf.Variable(tf.random_normal([1024, 10]))
- }
- biases = {
- 'bc1': tf.Variable(tf.random_normal([64])),
- 'bc2': tf.Variable(tf.random_normal([128])),
- 'bc3': tf.Variable(tf.random_normal([256])),
- 'bd1': tf.Variable(tf.random_normal([1024])),
- 'bd2': tf.Variable(tf.random_normal([1024])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- # Construct model
- pred = alex_net(x, weights, biases, keep_prob)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- step = 1
- # Keep training until reach max iterations
- while step * batch_size < training_iters:
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Fit training using batch data
- sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
- if step % display_step == 0:
- # Calculate batch accuracy
- acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
- # Calculate batch loss
- loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
- print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
- step += 1
- print "Optimization Finished!"
- # Calculate accuracy for 256 mnist test images
- print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
|