| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 | 
							- '''
 
- AlexNet implementation example using TensorFlow library.
 
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
 
- AlexNet Paper (http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
 
- Author: Aymeric Damien
 
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
 
- '''
 
- # Import MINST data
 
- import input_data
 
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
 
- import tensorflow as tf
 
- # Parameters
 
- learning_rate = 0.001
 
- training_iters = 200000
 
- batch_size = 64
 
- display_step = 20
 
- # Network Parameters
 
- n_input = 784 # MNIST data input (img shape: 28*28)
 
- n_classes = 10 # MNIST total classes (0-9 digits)
 
- dropout = 0.8 # Dropout, probability to keep units
 
- # tf Graph input
 
- x = tf.placeholder(tf.float32, [None, n_input])
 
- y = tf.placeholder(tf.float32, [None, n_classes])
 
- keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
 
- # Create AlexNet model
 
- def conv2d(name, l_input, w, b):
 
-     return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
 
- def max_pool(name, l_input, k):
 
-     return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
 
- def norm(name, l_input, lsize=4):
 
-     return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
 
- def alex_net(_X, _weights, _biases, _dropout):
 
-     # Reshape input picture
 
-     _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
 
-     # Convolution Layer
 
-     conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
 
-     # Max Pooling (down-sampling)
 
-     pool1 = max_pool('pool1', conv1, k=2)
 
-     # Apply Normalization
 
-     norm1 = norm('norm1', pool1, lsize=4)
 
-     # Apply Dropout
 
-     norm1 = tf.nn.dropout(norm1, _dropout)
 
-     # Convolution Layer
 
-     conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
 
-     # Max Pooling (down-sampling)
 
-     pool2 = max_pool('pool2', conv2, k=2)
 
-     # Apply Normalization
 
-     norm2 = norm('norm2', pool2, lsize=4)
 
-     # Apply Dropout
 
-     norm2 = tf.nn.dropout(norm2, _dropout)
 
-     # Convolution Layer
 
-     conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
 
-     # Max Pooling (down-sampling)
 
-     pool3 = max_pool('pool3', conv3, k=2)
 
-     # Apply Normalization
 
-     norm3 = norm('norm3', pool3, lsize=4)
 
-     # Apply Dropout
 
-     norm3 = tf.nn.dropout(norm3, _dropout)
 
-     # Fully connected layer
 
-     dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input
 
-     dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') # Relu activation
 
-     dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
 
-     # Output, class prediction
 
-     out = tf.matmul(dense2, _weights['out']) + _biases['out']
 
-     return out
 
- # Store layers weight & bias
 
- weights = {
 
-     'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
 
-     'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
 
-     'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
 
-     'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
 
-     'wd2': tf.Variable(tf.random_normal([1024, 1024])),
 
-     'out': tf.Variable(tf.random_normal([1024, 10]))
 
- }
 
- biases = {
 
-     'bc1': tf.Variable(tf.random_normal([64])),
 
-     'bc2': tf.Variable(tf.random_normal([128])),
 
-     'bc3': tf.Variable(tf.random_normal([256])),
 
-     'bd1': tf.Variable(tf.random_normal([1024])),
 
-     'bd2': tf.Variable(tf.random_normal([1024])),
 
-     'out': tf.Variable(tf.random_normal([n_classes]))
 
- }
 
- # Construct model
 
- pred = alex_net(x, weights, biases, keep_prob)
 
- # Define loss and optimizer
 
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
 
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
 
- # Evaluate model
 
- correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
 
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
 
- # Initializing the variables
 
- init = tf.initialize_all_variables()
 
- # Launch the graph
 
- with tf.Session() as sess:
 
-     sess.run(init)
 
-     step = 1
 
-     # Keep training until reach max iterations
 
-     while step * batch_size < training_iters:
 
-         batch_xs, batch_ys = mnist.train.next_batch(batch_size)
 
-         # Fit training using batch data
 
-         sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
 
-         if step % display_step == 0:
 
-             # Calculate batch accuracy
 
-             acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
 
-             # Calculate batch loss
 
-             loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
 
-             print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
 
-         step += 1
 
-     print "Optimization Finished!"
 
-     # Calculate accuracy for 256 mnist test images
 
-     print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
 
 
  |