123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # -*- coding: utf-8 -*-
- """ Auto Encoder Example.
- Using an auto encoder on MNIST handwritten digits.
- References:
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
- learning applied to document recognition." Proceedings of the IEEE,
- 86(11):2278-2324, November 1998.
- Links:
- [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
- """
- from __future__ import division, print_function, absolute_import
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Parameters
- learning_rate = 0.01
- training_epochs = 20
- batch_size = 256
- display_step = 1
- examples_to_show = 10
- # Network Parameters
- n_hidden_1 = 256 # 1st layer num features
- n_hidden_2 = 128 # 2nd layer num features
- n_input = 784 # MNIST data input (img shape: 28*28)
- # tf Graph input (only pictures)
- X = tf.placeholder("float", [None, n_input])
- weights = {
- 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
- 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
- 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
- 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
- }
- biases = {
- 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
- 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
- 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
- 'decoder_b2': tf.Variable(tf.random_normal([n_input])),
- }
- # Building the encoder
- def encoder(x):
- # Encoder Hidden layer with sigmoid activation #1
- layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
- # Decoder Hidden layer with sigmoid activation #2
- layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))
- return layer_2
- # Building the decoder
- def decoder(x):
- # Encoder Hidden layer with sigmoid activation #1
- layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))
- # Decoder Hidden layer with sigmoid activation #2
- layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
- return layer_2
- # Construct model
- encoder_op = encoder(X)
- decoder_op = decoder(encoder_op)
- y_pred = decoder_op
- y_true = X
- # Define loss and optimizer, minimize the squared error
- cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
- optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- total_batch = int(mnist.train.num_examples/batch_size)
- # Training cycle
- for epoch in range(training_epochs):
- # Loop over all batches
- for i in range(total_batch):
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Fit training using batch data
- _, cost_value = sess.run([optimizer, cost], feed_dict={X: batch_xs})
- # Display logs per epoch step
- if epoch % display_step == 0:
- print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost_value))
- print("Optimization Finished!")
- #Applying encode and decode over test set
- encode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
- # Compare original images with their reconstructions
- f, a = plt.subplots(2, 10, figsize=(10, 2))
- for i in range(examples_to_show):
- a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
- a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
- f.show()
- plt.draw()
- plt.waitforbuttonpress()
- # # Regression, with mean square error
- # net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001,
- # loss='mean_square', metric=None)
- #
- # # Training the auto encoder
- # model = tflearn.DNN(net, tensorboard_verbose=0)
- # model.fit(X, X, n_epoch=10, validation_set=(testX, testX),
- # run_id="auto_encoder", batch_size=256)
- #
- # # Encoding X[0] for test
- # print("\nTest encoding of X[0]:")
- # # New model, re-using the same session, for weights sharing
- # encoding_model = tflearn.DNN(encoder, session=model.session)
- # print(encoding_model.predict([X[0]]))
- #
- # # Testing the image reconstruction on new data (test set)
- # print("\nVisualizing results after being encoded and decoded:")
- # testX = tflearn.data_utils.shuffle(testX)[0]
- # # Applying encode and decode over test set
- # encode_decode = model.predict(testX)
- # # Compare original images with their reconstructions
- # f, a = plt.subplots(2, 10, figsize=(10, 2))
- # for i in range(10):
- # a[0][i].imshow(np.reshape(testX[i], (28, 28)))
- # a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
- # f.show()
- # plt.draw()
- # plt.waitforbuttonpress()
|