123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- '''
- A Bidirectional Reccurent Neural Network (LSTM) implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
- Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- from tensorflow.python.ops.constant_op import constant
- from tensorflow.models.rnn import rnn, rnn_cell
- import numpy as np
- '''
- To classify images using a bidirectional reccurent neural network, we consider every image row as a sequence of pixels.
- Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample.
- '''
- # Parameters
- learning_rate = 0.001
- training_iters = 100000
- batch_size = 128
- display_step = 10
- # Network Parameters
- n_input = 28 # MNIST data input (img shape: 28*28)
- n_steps = 28 # timesteps
- n_hidden = 128 # hidden layer num of features
- n_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- x = tf.placeholder("float", [None, n_steps, n_input])
- # Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
- istate_fw = tf.placeholder("float", [None, 2*n_hidden])
- istate_bw = tf.placeholder("float", [None, 2*n_hidden])
- y = tf.placeholder("float", [None, n_classes])
- # Define weights
- weights = {
- # Hidden layer weights => 2*n_hidden because of foward + backward cells
- 'hidden': tf.Variable(tf.random_normal([n_input, 2*n_hidden])),
- 'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
- }
- biases = {
- 'hidden': tf.Variable(tf.random_normal([2*n_hidden])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases, _batch_size, _seq_len):
- # BiRNN requires to supply sequence_length as [batch_size, int64]
- # Note: Tensorflow 0.6.0 requires BiRNN sequence_length parameter to be set
- # For a better implementation with latest version of tensorflow, check below
- _seq_len = tf.fill([_batch_size], constant(_seq_len, dtype=tf.int64))
- # input shape: (batch_size, n_steps, n_input)
- _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
- # Reshape to prepare input to hidden activation
- _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
- # Linear activation
- _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
- # Define lstm cells with tensorflow
- # Forward direction cell
- lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # Backward direction cell
- lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # Split data because rnn cell needs a list of inputs for the RNN inner loop
- _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
- # Get lstm cell output
- outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, _X,
- initial_state_fw=_istate_fw,
- initial_state_bw=_istate_bw,
- sequence_length=_seq_len)
- # Linear activation
- # Get inner loop last output
- return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
- pred = BiRNN(x, istate_fw, istate_bw, weights, biases, batch_size, n_steps)
- # NOTE: The following code is working with current master version of tensorflow
- # BiRNN sequence_length parameter isn't required, so we don't define it
- #
- # def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases):
- #
- # # input shape: (batch_size, n_steps, n_input)
- # _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
- # # Reshape to prepare input to hidden activation
- # _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
- # # Linear activation
- # _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
- #
- # # Define lstm cells with tensorflow
- # # Forward direction cell
- # lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # # Backward direction cell
- # lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # # Split data because rnn cell needs a list of inputs for the RNN inner loop
- # _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
- #
- # # Get lstm cell output
- # outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, _X,
- # initial_state_fw=_istate_fw,
- # initial_state_bw=_istate_bw)
- #
- # # Linear activation
- # # Get inner loop last output
- # return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
- #
- # pred = BiRNN(x, istate_fw, istate_bw, weights, biases)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- step = 1
- # Keep training until reach max iterations
- while step * batch_size < training_iters:
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Reshape data to get 28 seq of 28 elements
- batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
- # Fit training using batch data
- sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
- istate_fw: np.zeros((batch_size, 2*n_hidden)),
- istate_bw: np.zeros((batch_size, 2*n_hidden))})
- if step % display_step == 0:
- # Calculate batch accuracy
- acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
- istate_fw: np.zeros((batch_size, 2*n_hidden)),
- istate_bw: np.zeros((batch_size, 2*n_hidden))})
- # Calculate batch loss
- loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
- istate_fw: np.zeros((batch_size, 2*n_hidden)),
- istate_bw: np.zeros((batch_size, 2*n_hidden))})
- print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
- ", Training Accuracy= " + "{:.5f}".format(acc)
- step += 1
- print "Optimization Finished!"
- # Calculate accuracy for 128 mnist test images
- test_len = 128
- test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
- test_label = mnist.test.labels[:test_len]
- print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
- istate_fw: np.zeros((test_len, 2*n_hidden)),
- istate_bw: np.zeros((test_len, 2*n_hidden))})
|