123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- """ Auto Encoder Example.
- Build a 2 layers auto-encoder with TensorFlow to compress images to a
- lower latent space and then reconstruct them.
- References:
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
- learning applied to document recognition." Proceedings of the IEEE,
- 86(11):2278-2324, November 1998.
- Links:
- [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import division, print_function, absolute_import
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Training Parameters
- learning_rate = 0.01
- num_steps = 30000
- batch_size = 256
- display_step = 1000
- examples_to_show = 10
- # Network Parameters
- num_hidden_1 = 256 # 1st layer num features
- num_hidden_2 = 128 # 2nd layer num features (the latent dim)
- num_input = 784 # MNIST data input (img shape: 28*28)
- # tf Graph input (only pictures)
- X = tf.placeholder("float", [None, num_input])
- weights = {
- 'encoder_h1': tf.Variable(tf.random_normal([num_input, num_hidden_1])),
- 'encoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_hidden_2])),
- 'decoder_h1': tf.Variable(tf.random_normal([num_hidden_2, num_hidden_1])),
- 'decoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_input])),
- }
- biases = {
- 'encoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
- 'encoder_b2': tf.Variable(tf.random_normal([num_hidden_2])),
- 'decoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
- 'decoder_b2': tf.Variable(tf.random_normal([num_input])),
- }
- # Building the encoder
- def encoder(x):
- # Encoder Hidden layer with sigmoid activation #1
- layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
- biases['encoder_b1']))
- # Encoder Hidden layer with sigmoid activation #2
- layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
- biases['encoder_b2']))
- return layer_2
- # Building the decoder
- def decoder(x):
- # Decoder Hidden layer with sigmoid activation #1
- layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
- biases['decoder_b1']))
- # Decoder Hidden layer with sigmoid activation #2
- layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
- biases['decoder_b2']))
- return layer_2
- # Construct model
- encoder_op = encoder(X)
- decoder_op = decoder(encoder_op)
- # Prediction
- y_pred = decoder_op
- # Targets (Labels) are the input data.
- y_true = X
- # Define loss and optimizer, minimize the squared error
- loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
- optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start Training
- # Start a new TF session
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- # Training
- for i in range(1, num_steps+1):
- # Prepare Data
- # Get the next batch of MNIST data (only images are needed, not labels)
- batch_x, _ = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop) and cost op (to get loss value)
- _, l = sess.run([optimizer, loss], feed_dict={X: batch_x})
- # Display logs per step
- if i % display_step == 0 or i == 1:
- print('Step %i: Minibatch Loss: %f' % (i, l))
- # Testing
- # Encode and decode images from test set and visualize their reconstruction.
- n = 4
- canvas_orig = np.empty((28 * n, 28 * n))
- canvas_recon = np.empty((28 * n, 28 * n))
- for i in range(n):
- # MNIST test set
- batch_x, _ = mnist.test.next_batch(n)
- # Encode and decode the digit image
- g = sess.run(decoder_op, feed_dict={X: batch_x})
- # Display original images
- for j in range(n):
- # Draw the original digits
- canvas_orig[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = \
- batch_x[j].reshape([28, 28])
- # Display reconstructed images
- for j in range(n):
- # Draw the reconstructed digits
- canvas_recon[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = \
- g[j].reshape([28, 28])
- print("Original Images")
- plt.figure(figsize=(n, n))
- plt.imshow(canvas_orig, origin="upper", cmap="gray")
- plt.show()
- print("Reconstructed Images")
- plt.figure(figsize=(n, n))
- plt.imshow(canvas_recon, origin="upper", cmap="gray")
- plt.show()
|