123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- """ Convolutional Neural Network.
- Build and train a convolutional neural network with TensorFlow.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- This example is using TensorFlow layers API, see 'convolutional_network_raw'
- example for a raw implementation with variables.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import division, print_function, absolute_import
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
- import tensorflow as tf
- # Training Parameters
- learning_rate = 0.001
- num_steps = 2000
- batch_size = 128
- # Network Parameters
- num_input = 784 # MNIST data input (img shape: 28*28)
- num_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.75 # Dropout, probability to keep units
- # Create the neural network
- def conv_net(x_dict, n_classes, dropout, reuse, is_training):
- # Define a scope for reusing the variables
- with tf.variable_scope('ConvNet', reuse=reuse):
- # TF Estimator input is a dict, in case of multiple inputs
- x = x_dict['images']
- # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
- # Reshape to match picture format [Height x Width x Channel]
- # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
- x = tf.reshape(x, shape=[-1, 28, 28, 1])
- # Convolution Layer with 32 filters and a kernel size of 5
- conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
- # Convolution Layer with 64 filters and a kernel size of 3
- conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
- # Flatten the data to a 1-D vector for the fully connected layer
- fc1 = tf.contrib.layers.flatten(conv2)
- # Fully connected layer (in tf contrib folder for now)
- fc1 = tf.layers.dense(fc1, 1024)
- # Apply Dropout (if is_training is False, dropout is not applied)
- fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
- # Output layer, class prediction
- out = tf.layers.dense(fc1, n_classes)
- return out
- # Define the model function (following TF Estimator Template)
- def model_fn(features, labels, mode):
- # Build the neural network
- # Because Dropout have different behavior at training and prediction time, we
- # need to create 2 distinct computation graphs that still share the same weights.
- logits_train = conv_net(features, num_classes, dropout, reuse=False,
- is_training=True)
- logits_test = conv_net(features, num_classes, dropout, reuse=True,
- is_training=False)
- # Predictions
- pred_classes = tf.argmax(logits_test, axis=1)
- pred_probas = tf.nn.softmax(logits_test)
- # If prediction mode, early return
- if mode == tf.estimator.ModeKeys.PREDICT:
- return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)
- # Define loss and optimizer
- loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
- logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op,
- global_step=tf.train.get_global_step())
- # Evaluate the accuracy of the model
- acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
- # TF Estimators requires to return a EstimatorSpec, that specify
- # the different ops for training, evaluating, ...
- estim_specs = tf.estimator.EstimatorSpec(
- mode=mode,
- predictions=pred_classes,
- loss=loss_op,
- train_op=train_op,
- eval_metric_ops={'accuracy': acc_op})
- return estim_specs
- # Build the Estimator
- model = tf.estimator.Estimator(model_fn)
- # Define the input function for training
- input_fn = tf.estimator.inputs.numpy_input_fn(
- x={'images': mnist.train.images}, y=mnist.train.labels,
- batch_size=batch_size, num_epochs=None, shuffle=True)
- # Train the Model
- model.train(input_fn, steps=num_steps)
- # Evaluate the Model
- # Define the input function for evaluating
- input_fn = tf.estimator.inputs.numpy_input_fn(
- x={'images': mnist.test.images}, y=mnist.test.labels,
- batch_size=batch_size, shuffle=False)
- # Use the Estimator 'evaluate' method
- e = model.evaluate(input_fn)
- print("Testing Accuracy:", e['accuracy'])
|