123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- """ Convolutional Neural Network.
- Build and train a convolutional neural network with TensorFlow.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import division, print_function, absolute_import
- import tensorflow as tf
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Training Parameters
- learning_rate = 0.001
- num_steps = 200
- batch_size = 128
- display_step = 10
- # Network Parameters
- num_input = 784 # MNIST data input (img shape: 28*28)
- num_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.75 # Dropout, probability to keep units
- # tf Graph input
- X = tf.placeholder(tf.float32, [None, num_input])
- Y = tf.placeholder(tf.float32, [None, num_classes])
- keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
- # Create some wrappers for simplicity
- def conv2d(x, W, b, strides=1):
- # Conv2D wrapper, with bias and relu activation
- x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
- x = tf.nn.bias_add(x, b)
- return tf.nn.relu(x)
- def maxpool2d(x, k=2):
- # MaxPool2D wrapper
- return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
- padding='SAME')
- # Create model
- def conv_net(x, weights, biases, dropout):
- # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
- # Reshape to match picture format [Height x Width x Channel]
- # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
- x = tf.reshape(x, shape=[-1, 28, 28, 1])
- # Convolution Layer
- conv1 = conv2d(x, weights['wc1'], biases['bc1'])
- # Max Pooling (down-sampling)
- conv1 = maxpool2d(conv1, k=2)
- # Convolution Layer
- conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
- # Max Pooling (down-sampling)
- conv2 = maxpool2d(conv2, k=2)
- # Fully connected layer
- # Reshape conv2 output to fit fully connected layer input
- fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
- fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
- fc1 = tf.nn.relu(fc1)
- # Apply Dropout
- fc1 = tf.nn.dropout(fc1, dropout)
- # Output, class prediction
- out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
- return out
- # Store layers weight & bias
- weights = {
- # 5x5 conv, 1 input, 32 outputs
- 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
- # 5x5 conv, 32 inputs, 64 outputs
- 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
- # fully connected, 7*7*64 inputs, 1024 outputs
- 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
- # 1024 inputs, 10 outputs (class prediction)
- 'out': tf.Variable(tf.random_normal([1024, num_classes]))
- }
- biases = {
- 'bc1': tf.Variable(tf.random_normal([32])),
- 'bc2': tf.Variable(tf.random_normal([64])),
- 'bd1': tf.Variable(tf.random_normal([1024])),
- 'out': tf.Variable(tf.random_normal([num_classes]))
- }
- # Construct model
- logits = conv_net(X, weights, biases, keep_prob)
- prediction = tf.nn.softmax(logits)
- # Define loss and optimizer
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
- logits=logits, labels=Y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- for step in range(1, num_steps+1):
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop)
- sess.run(train_op, feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.8})
- if step % display_step == 0 or step == 1:
- # Calculate batch loss and accuracy
- loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
- Y: batch_y,
- keep_prob: 1.0})
- print("Step " + str(step) + ", Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc))
- print("Optimization Finished!")
- # Calculate accuracy for 256 MNIST test images
- print("Testing Accuracy:", \
- sess.run(accuracy, feed_dict={X: mnist.test.images[:256],
- Y: mnist.test.labels[:256],
- keep_prob: 1.0}))
|