convolutional_network_raw.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. """ Convolutional Neural Network.
  2. Build and train a convolutional neural network with TensorFlow.
  3. This example is using the MNIST database of handwritten digits
  4. (http://yann.lecun.com/exdb/mnist/)
  5. Author: Aymeric Damien
  6. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  7. """
  8. from __future__ import division, print_function, absolute_import
  9. import tensorflow as tf
  10. # Import MNIST data
  11. from tensorflow.examples.tutorials.mnist import input_data
  12. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  13. # Training Parameters
  14. learning_rate = 0.001
  15. num_steps = 200
  16. batch_size = 128
  17. display_step = 10
  18. # Network Parameters
  19. num_input = 784 # MNIST data input (img shape: 28*28)
  20. num_classes = 10 # MNIST total classes (0-9 digits)
  21. dropout = 0.75 # Dropout, probability to keep units
  22. # tf Graph input
  23. X = tf.placeholder(tf.float32, [None, num_input])
  24. Y = tf.placeholder(tf.float32, [None, num_classes])
  25. keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
  26. # Create some wrappers for simplicity
  27. def conv2d(x, W, b, strides=1):
  28. # Conv2D wrapper, with bias and relu activation
  29. x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
  30. x = tf.nn.bias_add(x, b)
  31. return tf.nn.relu(x)
  32. def maxpool2d(x, k=2):
  33. # MaxPool2D wrapper
  34. return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
  35. padding='SAME')
  36. # Create model
  37. def conv_net(x, weights, biases, dropout):
  38. # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
  39. # Reshape to match picture format [Height x Width x Channel]
  40. # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
  41. x = tf.reshape(x, shape=[-1, 28, 28, 1])
  42. # Convolution Layer
  43. conv1 = conv2d(x, weights['wc1'], biases['bc1'])
  44. # Max Pooling (down-sampling)
  45. conv1 = maxpool2d(conv1, k=2)
  46. # Convolution Layer
  47. conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
  48. # Max Pooling (down-sampling)
  49. conv2 = maxpool2d(conv2, k=2)
  50. # Fully connected layer
  51. # Reshape conv2 output to fit fully connected layer input
  52. fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
  53. fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
  54. fc1 = tf.nn.relu(fc1)
  55. # Apply Dropout
  56. fc1 = tf.nn.dropout(fc1, dropout)
  57. # Output, class prediction
  58. out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
  59. return out
  60. # Store layers weight & bias
  61. weights = {
  62. # 5x5 conv, 1 input, 32 outputs
  63. 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
  64. # 5x5 conv, 32 inputs, 64 outputs
  65. 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
  66. # fully connected, 7*7*64 inputs, 1024 outputs
  67. 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
  68. # 1024 inputs, 10 outputs (class prediction)
  69. 'out': tf.Variable(tf.random_normal([1024, num_classes]))
  70. }
  71. biases = {
  72. 'bc1': tf.Variable(tf.random_normal([32])),
  73. 'bc2': tf.Variable(tf.random_normal([64])),
  74. 'bd1': tf.Variable(tf.random_normal([1024])),
  75. 'out': tf.Variable(tf.random_normal([num_classes]))
  76. }
  77. # Construct model
  78. logits = conv_net(X, weights, biases, keep_prob)
  79. prediction = tf.nn.softmax(logits)
  80. # Define loss and optimizer
  81. loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
  82. logits=logits, labels=Y))
  83. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  84. train_op = optimizer.minimize(loss_op)
  85. # Evaluate model
  86. correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
  87. accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
  88. # Initialize the variables (i.e. assign their default value)
  89. init = tf.global_variables_initializer()
  90. # Start training
  91. with tf.Session() as sess:
  92. # Run the initializer
  93. sess.run(init)
  94. for step in range(1, num_steps+1):
  95. batch_x, batch_y = mnist.train.next_batch(batch_size)
  96. # Run optimization op (backprop)
  97. sess.run(train_op, feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.8})
  98. if step % display_step == 0 or step == 1:
  99. # Calculate batch loss and accuracy
  100. loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
  101. Y: batch_y,
  102. keep_prob: 1.0})
  103. print("Step " + str(step) + ", Minibatch Loss= " + \
  104. "{:.4f}".format(loss) + ", Training Accuracy= " + \
  105. "{:.3f}".format(acc))
  106. print("Optimization Finished!")
  107. # Calculate accuracy for 256 MNIST test images
  108. print("Testing Accuracy:", \
  109. sess.run(accuracy, feed_dict={X: mnist.test.images[:256],
  110. Y: mnist.test.labels[:256],
  111. keep_prob: 1.0}))