123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- """ Neural Network.
- A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
- implementation with TensorFlow. This example is using the MNIST database
- of handwritten digits (http://yann.lecun.com/exdb/mnist/).
- This example is using TensorFlow layers, see 'neural_network_raw' example for
- a raw implementation with variables.
- Links:
- [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
- import tensorflow as tf
- # Parameters
- learning_rate = 0.1
- num_steps = 1000
- batch_size = 128
- display_step = 100
- # Network Parameters
- n_hidden_1 = 256 # 1st layer number of neurons
- n_hidden_2 = 256 # 2nd layer number of neurons
- num_input = 784 # MNIST data input (img shape: 28*28)
- num_classes = 10 # MNIST total classes (0-9 digits)
- # Define the neural network
- def neural_net(x_dict):
- # TF Estimator input is a dict, in case of multiple inputs
- x = x_dict['images']
- # Hidden fully connected layer with 256 neurons
- layer_1 = tf.layers.dense(x, n_hidden_1)
- # Hidden fully connected layer with 256 neurons
- layer_2 = tf.layers.dense(layer_1, n_hidden_2)
- # Output fully connected layer with a neuron for each class
- out_layer = tf.layers.dense(layer_2, num_classes)
- return out_layer
- # Define the model function (following TF Estimator Template)
- def model_fn(features, labels, mode):
- # Build the neural network
- logits = neural_net(features)
- # Predictions
- pred_classes = tf.argmax(logits, axis=1)
- pred_probas = tf.nn.softmax(logits)
- # If prediction mode, early return
- if mode == tf.estimator.ModeKeys.PREDICT:
- return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)
- # Define loss and optimizer
- loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
- logits=logits, labels=tf.cast(labels, dtype=tf.int32)))
- optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op,
- global_step=tf.train.get_global_step())
- # Evaluate the accuracy of the model
- acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
- # TF Estimators requires to return a EstimatorSpec, that specify
- # the different ops for training, evaluating, ...
- estim_specs = tf.estimator.EstimatorSpec(
- mode=mode,
- predictions=pred_classes,
- loss=loss_op,
- train_op=train_op,
- eval_metric_ops={'accuracy': acc_op})
- return estim_specs
- # Build the Estimator
- model = tf.estimator.Estimator(model_fn)
- # Define the input function for training
- input_fn = tf.estimator.inputs.numpy_input_fn(
- x={'images': mnist.train.images}, y=mnist.train.labels,
- batch_size=batch_size, num_epochs=None, shuffle=True)
- # Train the Model
- model.train(input_fn, steps=num_steps)
- # Evaluate the Model
- # Define the input function for evaluating
- input_fn = tf.estimator.inputs.numpy_input_fn(
- x={'images': mnist.test.images}, y=mnist.test.labels,
- batch_size=batch_size, shuffle=False)
- # Use the Estimator 'evaluate' method
- e = model.evaluate(input_fn)
- print("Testing Accuracy:", e['accuracy'])
|