123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- """ Neural Network.
- A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
- implementation with TensorFlow. This example is using the MNIST database
- of handwritten digits (http://yann.lecun.com/exdb/mnist/).
- Links:
- [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- # Parameters
- learning_rate = 0.1
- num_steps = 500
- batch_size = 128
- display_step = 100
- # Network Parameters
- n_hidden_1 = 256 # 1st layer number of neurons
- n_hidden_2 = 256 # 2nd layer number of neurons
- num_input = 784 # MNIST data input (img shape: 28*28)
- num_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- X = tf.placeholder("float", [None, num_input])
- Y = tf.placeholder("float", [None, num_classes])
- # Store layers weight & bias
- weights = {
- 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
- 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
- 'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
- }
- biases = {
- 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
- 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
- 'out': tf.Variable(tf.random_normal([num_classes]))
- }
- # Create model
- def neural_net(x):
- # Hidden fully connected layer with 256 neurons
- layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
- # Hidden fully connected layer with 256 neurons
- layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
- # Output fully connected layer with a neuron for each class
- out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
- return out_layer
- # Construct model
- logits = neural_net(X)
- prediction = tf.nn.softmax(logits)
- # Define loss and optimizer
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
- logits=logits, labels=Y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- for step in range(1, num_steps+1):
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop)
- sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
- if step % display_step == 0 or step == 1:
- # Calculate batch loss and accuracy
- loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
- Y: batch_y})
- print("Step " + str(step) + ", Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc))
- print("Optimization Finished!")
- # Calculate accuracy for MNIST test images
- print("Testing Accuracy:", \
- sess.run(accuracy, feed_dict={X: mnist.test.images,
- Y: mnist.test.labels}))
|