linear_regression.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. '''
  2. A linear regression learning algorithm example using TensorFlow library.
  3. Author: Aymeric Damien
  4. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  5. '''
  6. import tensorflow as tf
  7. import numpy
  8. import matplotlib.pyplot as plt
  9. rng = numpy.random
  10. # Parameters
  11. learning_rate = 0.01
  12. training_epochs = 2000
  13. display_step = 50
  14. # Training Data
  15. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  16. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  17. n_samples = train_X.shape[0]
  18. # tf Graph Input
  19. X = tf.placeholder("float")
  20. Y = tf.placeholder("float")
  21. # Create Model
  22. # Set model weights
  23. W = tf.Variable(rng.randn(), name="weight")
  24. b = tf.Variable(rng.randn(), name="bias")
  25. # Construct a linear model
  26. activation = tf.add(tf.mul(X, W), b)
  27. # Minimize the squared errors
  28. cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
  29. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
  30. # Initializing the variables
  31. init = tf.initialize_all_variables()
  32. # Launch the graph
  33. with tf.Session() as sess:
  34. sess.run(init)
  35. # Fit all training data
  36. for epoch in range(training_epochs):
  37. for (x, y) in zip(train_X, train_Y):
  38. sess.run(optimizer, feed_dict={X: x, Y: y})
  39. #Display logs per epoch step
  40. if epoch % display_step == 0:
  41. print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
  42. "W=", sess.run(W), "b=", sess.run(b)
  43. print "Optimization Finished!"
  44. training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
  45. print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'
  46. # Testing example, as requested (Issue #2)
  47. test_X = numpy.asarray([6.83,4.668,8.9,7.91,5.7,8.7,3.1,2.1])
  48. test_Y = numpy.asarray([1.84,2.273,3.2,2.831,2.92,3.24,1.35,1.03])
  49. print "Testing... (L2 loss Comparison)"
  50. testing_cost = sess.run(tf.reduce_sum(tf.pow(activation-Y, 2))/(2*test_X.shape[0]),
  51. feed_dict={X: test_X, Y: test_Y}) #same function as cost above
  52. print "Testing cost=", testing_cost
  53. print "Absolute l2 loss difference:", abs(training_cost - testing_cost)
  54. #Graphic display
  55. plt.plot(train_X, train_Y, 'ro', label='Original data')
  56. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  57. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  58. plt.legend()
  59. plt.show()