1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- '''
- A linear regression learning algorithm example using TensorFlow library.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- import tensorflow as tf
- import numpy
- import matplotlib.pyplot as plt
- rng = numpy.random
- # Parameters
- learning_rate = 0.01
- training_epochs = 2000
- display_step = 50
- # Training Data
- train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
- train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
- n_samples = train_X.shape[0]
- # tf Graph Input
- X = tf.placeholder("float")
- Y = tf.placeholder("float")
- # Create Model
- # Set model weights
- W = tf.Variable(rng.randn(), name="weight")
- b = tf.Variable(rng.randn(), name="bias")
- # Construct a linear model
- activation = tf.add(tf.mul(X, W), b)
- # Minimize the squared errors
- cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
- optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # Fit all training data
- for epoch in range(training_epochs):
- for (x, y) in zip(train_X, train_Y):
- sess.run(optimizer, feed_dict={X: x, Y: y})
- #Display logs per epoch step
- if epoch % display_step == 0:
- print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
- "W=", sess.run(W), "b=", sess.run(b)
- print "Optimization Finished!"
- training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
- print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'
- # Testing example, as requested (Issue #2)
- test_X = numpy.asarray([6.83,4.668,8.9,7.91,5.7,8.7,3.1,2.1])
- test_Y = numpy.asarray([1.84,2.273,3.2,2.831,2.92,3.24,1.35,1.03])
- print "Testing... (L2 loss Comparison)"
- testing_cost = sess.run(tf.reduce_sum(tf.pow(activation-Y, 2))/(2*test_X.shape[0]),
- feed_dict={X: test_X, Y: test_Y}) #same function as cost above
- print "Testing cost=", testing_cost
- print "Absolute l2 loss difference:", abs(training_cost - testing_cost)
- #Graphic display
- plt.plot(train_X, train_Y, 'ro', label='Original data')
- plt.plot(test_X, test_Y, 'bo', label='Testing data')
- plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
- plt.legend()
- plt.show()
|