123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- '''
- A Convolutional Network implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import print_function
- import tensorflow as tf
- # Import MINST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Parameters
- learning_rate = 0.001
- training_iters = 200000
- batch_size = 128
- display_step = 10
- # Network Parameters
- n_input = 784 # MNIST data input (img shape: 28*28)
- n_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.75 # Dropout, probability to keep units
- # tf Graph input
- x = tf.placeholder(tf.float32, [None, n_input])
- y = tf.placeholder(tf.float32, [None, n_classes])
- keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
- # Create some wrappers for simplicity
- def conv2d(x, W, b, strides=1):
- # Conv2D wrapper, with bias and relu activation
- x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
- x = tf.nn.bias_add(x, b)
- return tf.nn.relu(x)
- def maxpool2d(x, k=2):
- # MaxPool2D wrapper
- return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
- padding='SAME')
- # Create model
- def conv_net(x, weights, biases, dropout):
- # Reshape input picture
- x = tf.reshape(x, shape=[-1, 28, 28, 1])
- # Convolution Layer
- conv1 = conv2d(x, weights['wc1'], biases['bc1'])
- # Max Pooling (down-sampling)
- conv1 = maxpool2d(conv1, k=2)
- # Convolution Layer
- conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
- # Max Pooling (down-sampling)
- conv2 = maxpool2d(conv2, k=2)
- # Fully connected layer
- # Reshape conv2 output to fit fully connected layer input
- fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
- fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
- fc1 = tf.nn.relu(fc1)
- # Apply Dropout
- fc1 = tf.nn.dropout(fc1, dropout)
- # Output, class prediction
- out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
- return out
- # Store layers weight & bias
- weights = {
- # 5x5 conv, 1 input, 32 outputs
- 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
- # 5x5 conv, 32 inputs, 64 outputs
- 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
- # fully connected, 7*7*64 inputs, 1024 outputs
- 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
- # 1024 inputs, 10 outputs (class prediction)
- 'out': tf.Variable(tf.random_normal([1024, n_classes]))
- }
- biases = {
- 'bc1': tf.Variable(tf.random_normal([32])),
- 'bc2': tf.Variable(tf.random_normal([64])),
- 'bd1': tf.Variable(tf.random_normal([1024])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- # Construct model
- pred = conv_net(x, weights, biases, keep_prob)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- step = 1
- # Keep training until reach max iterations
- while step * batch_size < training_iters:
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop)
- sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
- keep_prob: dropout})
- if step % display_step == 0:
- # Calculate batch loss and accuracy
- loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
- y: batch_y,
- keep_prob: 1.})
- print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
- "{:.6f}".format(loss) + ", Training Accuracy= " + \
- "{:.5f}".format(acc))
- step += 1
- print("Optimization Finished!")
- # Calculate accuracy for 256 mnist test images
- print("Testing Accuracy:", \
- sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
- y: mnist.test.labels[:256],
- keep_prob: 1.}))
|