123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- '''
- A Multilayer Perceptron implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import print_function
- # Import MINST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- # Parameters
- learning_rate = 0.001
- training_epochs = 15
- batch_size = 100
- display_step = 1
- # Network Parameters
- n_hidden_1 = 256 # 1st layer number of features
- n_hidden_2 = 256 # 2nd layer number of features
- n_input = 784 # MNIST data input (img shape: 28*28)
- n_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- x = tf.placeholder("float", [None, n_input])
- y = tf.placeholder("float", [None, n_classes])
- # Create model
- def multilayer_perceptron(x, weights, biases):
- # Hidden layer with RELU activation
- layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
- layer_1 = tf.nn.relu(layer_1)
- # Hidden layer with RELU activation
- layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
- layer_2 = tf.nn.relu(layer_2)
- # Output layer with linear activation
- out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
- return out_layer
- # Store layers weight & bias
- weights = {
- 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
- 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
- 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
- }
- biases = {
- 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
- 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- # Construct model
- pred = multilayer_perceptron(x, weights, biases)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # Training cycle
- for epoch in range(training_epochs):
- avg_cost = 0.
- total_batch = int(mnist.train.num_examples/batch_size)
- # Loop over all batches
- for i in range(total_batch):
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop) and cost op (to get loss value)
- _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
- y: batch_y})
- # Compute average loss
- avg_cost += c / total_batch
- # Display logs per epoch step
- if epoch % display_step == 0:
- print("Epoch:", '%04d' % (epoch+1), "cost=", \
- "{:.9f}".format(avg_cost))
- print("Optimization Finished!")
- # Test model
- correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
- # Calculate accuracy
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
|