123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- '''
- A linear regression learning algorithm example using TensorFlow library.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import print_function
- import tensorflow as tf
- import numpy
- import matplotlib.pyplot as plt
- rng = numpy.random
- # Parameters
- learning_rate = 0.01
- training_epochs = 1000
- display_step = 50
- # Training Data
- train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
- 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
- train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
- 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
- n_samples = train_X.shape[0]
- # tf Graph Input
- X = tf.placeholder("float")
- Y = tf.placeholder("float")
- # Set model weights
- W = tf.Variable(rng.randn(), name="weight")
- b = tf.Variable(rng.randn(), name="bias")
- # Construct a linear model
- pred = tf.add(tf.multiply(X, W), b)
- # Mean squared error
- cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
- # Gradient descent
- # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
- optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- # Fit all training data
- for epoch in range(training_epochs):
- for (x, y) in zip(train_X, train_Y):
- sess.run(optimizer, feed_dict={X: x, Y: y})
- # Display logs per epoch step
- if (epoch+1) % display_step == 0:
- c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
- print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
- "W=", sess.run(W), "b=", sess.run(b))
- print("Optimization Finished!")
- training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
- print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
- # Graphic display
- plt.plot(train_X, train_Y, 'ro', label='Original data')
- plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
- plt.legend()
- plt.show()
- # Testing example, as requested (Issue #2)
- test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
- test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
- print("Testing... (Mean square loss Comparison)")
- testing_cost = sess.run(
- tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
- feed_dict={X: test_X, Y: test_Y}) # same function as cost above
- print("Testing cost=", testing_cost)
- print("Absolute mean square loss difference:", abs(
- training_cost - testing_cost))
- plt.plot(test_X, test_Y, 'bo', label='Testing data')
- plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
- plt.legend()
- plt.show()
|