alexnet.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. # Import MINST data
  2. import input_data
  3. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  4. import tensorflow as tf
  5. # Parameters
  6. learning_rate = 0.001
  7. training_iters = 200000
  8. batch_size = 64
  9. display_step = 20
  10. #Network Parameters
  11. n_input = 784 #MNIST data input
  12. n_classes = 10 #MNIST total classes
  13. dropout = 0.8
  14. # Create model
  15. x = tf.placeholder(tf.types.float32, [None, n_input])
  16. y = tf.placeholder(tf.types.float32, [None, n_classes])
  17. keep_prob = tf.placeholder(tf.types.float32) #dropout
  18. def conv2d(name, l_input, w, b):
  19. return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
  20. def max_pool(name, l_input, k):
  21. return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
  22. def norm(name, l_input, lsize=4):
  23. return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
  24. def conv_net(_X, _weights, _biases, _dropout):
  25. _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
  26. conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
  27. pool1 = max_pool('pool1', conv1, k=2)
  28. norm1 = norm('norm1', pool1, lsize=4)
  29. norm1 = tf.nn.dropout(norm1, _dropout)
  30. conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
  31. pool2 = max_pool('pool2', conv2, k=2)
  32. norm2 = norm('norm2', pool2, lsize=4)
  33. norm2 = tf.nn.dropout(norm2, _dropout)
  34. conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
  35. pool3 = max_pool('pool3', conv3, k=2)
  36. norm3 = norm('norm3', pool3, lsize=4)
  37. norm3 = tf.nn.dropout(norm3, _dropout)
  38. dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
  39. dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
  40. dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')
  41. out = tf.matmul(dense2, _weights['out']) + _biases['out']
  42. return out
  43. weights = {
  44. 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
  45. 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
  46. 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
  47. 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
  48. 'wd2': tf.Variable(tf.random_normal([1024, 1024])),
  49. 'out': tf.Variable(tf.random_normal([1024, 10]))
  50. }
  51. biases = {
  52. 'bc1': tf.Variable(tf.random_normal([64])),
  53. 'bc2': tf.Variable(tf.random_normal([128])),
  54. 'bc3': tf.Variable(tf.random_normal([256])),
  55. 'bd1': tf.Variable(tf.random_normal([1024])),
  56. 'bd2': tf.Variable(tf.random_normal([1024])),
  57. 'out': tf.Variable(tf.random_normal([n_classes]))
  58. }
  59. pred = conv_net(x, weights, biases, keep_prob)
  60. cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
  61. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
  62. #Evaluate model
  63. correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
  64. accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
  65. # Train
  66. init = tf.initialize_all_variables()
  67. with tf.Session() as sess:
  68. sess.run(init)
  69. step = 1
  70. while step * batch_size < training_iters:
  71. batch_xs, batch_ys = mnist.train.next_batch(batch_size)
  72. sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
  73. if step % display_step == 0:
  74. acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
  75. loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
  76. print "Iter " + str(step*batch_size) + ", Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
  77. step += 1
  78. print "Optimization Finished!"
  79. #Accuracy on 256 mnist test images
  80. print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})