123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- ''' Logistic Regression with Eager API.
- A logistic regression learning algorithm example using TensorFlow's Eager API.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import absolute_import, division, print_function
- import tensorflow as tf
- # Set Eager API
- tf.enable_eager_execution()
- tfe = tf.contrib.eager
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
- # Parameters
- learning_rate = 0.1
- batch_size = 128
- num_steps = 1000
- display_step = 100
- dataset = tf.data.Dataset.from_tensor_slices(
- (mnist.train.images, mnist.train.labels))
- dataset = dataset.repeat().batch(batch_size).prefetch(batch_size)
- dataset_iter = tfe.Iterator(dataset)
- # Variables
- W = tfe.Variable(tf.zeros([784, 10]), name='weights')
- b = tfe.Variable(tf.zeros([10]), name='bias')
- # Logistic regression (Wx + b)
- def logistic_regression(inputs):
- return tf.matmul(inputs, W) + b
- # Cross-Entropy loss function
- def loss_fn(inference_fn, inputs, labels):
- # Using sparse_softmax cross entropy
- return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
- logits=inference_fn(inputs), labels=labels))
- # Calculate accuracy
- def accuracy_fn(inference_fn, inputs, labels):
- prediction = tf.nn.softmax(inference_fn(inputs))
- correct_pred = tf.equal(tf.argmax(prediction, 1), labels)
- return tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # SGD Optimizer
- optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
- # Compute gradients
- grad = tfe.implicit_gradients(loss_fn)
- # Training
- average_loss = 0.
- average_acc = 0.
- for step in range(num_steps):
- # Iterate through the dataset
- d = dataset_iter.next()
- # Images
- x_batch = d[0]
- # Labels
- y_batch = tf.cast(d[1], dtype=tf.int64)
- # Compute the batch loss
- batch_loss = loss_fn(logistic_regression, x_batch, y_batch)
- average_loss += batch_loss
- # Compute the batch accuracy
- batch_accuracy = accuracy_fn(logistic_regression, x_batch, y_batch)
- average_acc += batch_accuracy
- if step == 0:
- # Display the initial cost, before optimizing
- print("Initial loss= {:.9f}".format(average_loss))
- # Update the variables following gradients info
- optimizer.apply_gradients(grad(logistic_regression, x_batch, y_batch))
- # Display info
- if (step + 1) % display_step == 0 or step == 0:
- if step > 0:
- average_loss /= display_step
- average_acc /= display_step
- print("Step:", '%04d' % (step + 1), " loss=",
- "{:.9f}".format(average_loss), " accuracy=",
- "{:.4f}".format(average_acc))
- average_loss = 0.
- average_acc = 0.
- # Evaluate model on the test image set
- testX = mnist.test.images
- testY = mnist.test.labels
- test_acc = accuracy_fn(logistic_regression, testX, testY)
- print("Testset Accuracy: {:.4f}".format(test_acc))
|