linear_regression.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. '''
  2. A linear regression learning algorithm example using TensorFlow library.
  3. Author: Aymeric Damien
  4. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  5. '''
  6. from __future__ import print_function
  7. import tensorflow as tf
  8. import numpy
  9. import matplotlib.pyplot as plt
  10. rng = numpy.random
  11. # Parameters
  12. learning_rate = 0.01
  13. training_epochs = 1000
  14. display_step = 50
  15. # Training Data
  16. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
  17. 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  18. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
  19. 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  20. n_samples = train_X.shape[0]
  21. # tf Graph Input
  22. X = tf.placeholder("float")
  23. Y = tf.placeholder("float")
  24. # Set model weights
  25. W = tf.Variable(rng.randn(), name="weight")
  26. b = tf.Variable(rng.randn(), name="bias")
  27. # Construct a linear model
  28. pred = tf.add(tf.multiply(X, W), b)
  29. # Mean squared error
  30. cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
  31. # Gradient descent
  32. # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
  33. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
  34. # Initializing the variables
  35. init = tf.global_variables_initializer()
  36. # Launch the graph
  37. with tf.Session() as sess:
  38. sess.run(init)
  39. # Fit all training data
  40. for epoch in range(training_epochs):
  41. for (x, y) in zip(train_X, train_Y):
  42. sess.run(optimizer, feed_dict={X: x, Y: y})
  43. # Display logs per epoch step
  44. if (epoch+1) % display_step == 0:
  45. c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
  46. print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
  47. "W=", sess.run(W), "b=", sess.run(b))
  48. print("Optimization Finished!")
  49. training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
  50. print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
  51. # Graphic display
  52. plt.plot(train_X, train_Y, 'ro', label='Original data')
  53. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  54. plt.legend()
  55. plt.show()
  56. # Testing example, as requested (Issue #2)
  57. test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
  58. test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
  59. print("Testing... (Mean square loss Comparison)")
  60. testing_cost = sess.run(
  61. tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
  62. feed_dict={X: test_X, Y: test_Y}) # same function as cost above
  63. print("Testing cost=", testing_cost)
  64. print("Absolute mean square loss difference:", abs(
  65. training_cost - testing_cost))
  66. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  67. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  68. plt.legend()
  69. plt.show()