123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- """ TensorFlow Dataset API.
- In this example, we will show how to load numpy array data into the new
- TensorFlow 'Dataset' API. The Dataset API implements an optimized data pipeline
- with queues, that make data processing and training faster (especially on GPU).
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- import tensorflow as tf
- # Import MNIST data (Numpy format)
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Parameters
- learning_rate = 0.001
- num_steps = 2000
- batch_size = 128
- display_step = 100
- # Network Parameters
- n_input = 784 # MNIST data input (img shape: 28*28)
- n_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.75 # Dropout, probability to keep units
- sess = tf.Session()
- # Create a dataset tensor from the images and the labels
- dataset = tf.data.Dataset.from_tensor_slices(
- (mnist.train.images, mnist.train.labels))
- # Automatically refill the data queue when empty
- dataset = dataset.repeat()
- # Create batches of data
- dataset = dataset.batch(batch_size)
- # Prefetch data for faster consumption
- dataset = dataset.prefetch(batch_size)
- # Create an iterator over the dataset
- iterator = dataset.make_initializable_iterator()
- # Initialize the iterator
- sess.run(iterator.initializer)
- # Neural Net Input (images, labels)
- X, Y = iterator.get_next()
- # -----------------------------------------------
- # THIS IS A CLASSIC CNN (see examples, section 3)
- # -----------------------------------------------
- # Note that a few elements have changed (usage of sess run).
- # Create model
- def conv_net(x, n_classes, dropout, reuse, is_training):
- # Define a scope for reusing the variables
- with tf.variable_scope('ConvNet', reuse=reuse):
- # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
- # Reshape to match picture format [Height x Width x Channel]
- # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
- x = tf.reshape(x, shape=[-1, 28, 28, 1])
- # Convolution Layer with 32 filters and a kernel size of 5
- conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
- # Convolution Layer with 32 filters and a kernel size of 5
- conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
- # Flatten the data to a 1-D vector for the fully connected layer
- fc1 = tf.contrib.layers.flatten(conv2)
- # Fully connected layer (in contrib folder for now)
- fc1 = tf.layers.dense(fc1, 1024)
- # Apply Dropout (if is_training is False, dropout is not applied)
- fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
- # Output layer, class prediction
- out = tf.layers.dense(fc1, n_classes)
- # Because 'softmax_cross_entropy_with_logits' already apply softmax,
- # we only apply softmax to testing network
- out = tf.nn.softmax(out) if not is_training else out
- return out
- # Because Dropout have different behavior at training and prediction time, we
- # need to create 2 distinct computation graphs that share the same weights.
- # Create a graph for training
- logits_train = conv_net(X, n_classes, dropout, reuse=False, is_training=True)
- # Create another graph for testing that reuse the same weights, but has
- # different behavior for 'dropout' (not applied).
- logits_test = conv_net(X, n_classes, dropout, reuse=True, is_training=False)
- # Define loss and optimizer (with train logits, for dropout to take effect)
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
- logits=logits_train, labels=Y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluate model (with test logits, for dropout to be disabled)
- correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.argmax(Y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Run the initializer
- sess.run(init)
- # Training cycle
- for step in range(1, num_steps + 1):
- # Run optimization
- sess.run(train_op)
- if step % display_step == 0 or step == 1:
- # Calculate batch loss and accuracy
- # (note that this consume a new batch of data)
- loss, acc = sess.run([loss_op, accuracy])
- print("Step " + str(step) + ", Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc))
- print("Optimization Finished!")
|