linear_regression.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. '''
  2. A linear regression learning algorithm example using TensorFlow library.
  3. Author: Aymeric Damien
  4. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  5. '''
  6. import tensorflow as tf
  7. import numpy
  8. import matplotlib.pyplot as plt
  9. rng = numpy.random
  10. # Parameters
  11. learning_rate = 0.01
  12. training_epochs = 1000
  13. display_step = 50
  14. # Training Data
  15. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
  16. 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  17. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
  18. 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  19. n_samples = train_X.shape[0]
  20. # tf Graph Input
  21. X = tf.placeholder("float")
  22. Y = tf.placeholder("float")
  23. # Set model weights
  24. W = tf.Variable(rng.randn(), name="weight")
  25. b = tf.Variable(rng.randn(), name="bias")
  26. # Construct a linear model
  27. pred = tf.add(tf.mul(X, W), b)
  28. # Mean squared error
  29. cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
  30. # Gradient descent
  31. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
  32. # Initializing the variables
  33. init = tf.initialize_all_variables()
  34. # Launch the graph
  35. with tf.Session() as sess:
  36. sess.run(init)
  37. # Fit all training data
  38. for epoch in range(training_epochs):
  39. for (x, y) in zip(train_X, train_Y):
  40. sess.run(optimizer, feed_dict={X: x, Y: y})
  41. #Display logs per epoch step
  42. if (epoch+1) % display_step == 0:
  43. c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
  44. print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
  45. "W=", sess.run(W), "b=", sess.run(b)
  46. print "Optimization Finished!"
  47. training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
  48. print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'
  49. #Graphic display
  50. plt.plot(train_X, train_Y, 'ro', label='Original data')
  51. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  52. plt.legend()
  53. plt.show()
  54. # Testing example, as requested (Issue #2)
  55. test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
  56. test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
  57. print "Testing... (Mean square loss Comparison)"
  58. testing_cost = sess.run(
  59. tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
  60. feed_dict={X: test_X, Y: test_Y}) # same function as cost above
  61. print "Testing cost=", testing_cost
  62. print "Absolute mean square loss difference:", abs(
  63. training_cost - testing_cost)
  64. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  65. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  66. plt.legend()
  67. plt.show()