12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- '''
- A nearest neighbor learning algorithm example using TensorFlow library.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- import numpy as np
- import tensorflow as tf
- # Import MINST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # In this example, we limit mnist data
- Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
- Xte, Yte = mnist.test.next_batch(200) #200 for testing
- # tf Graph Input
- xtr = tf.placeholder("float", [None, 784])
- xte = tf.placeholder("float", [784])
- # Nearest Neighbor calculation using L1 Distance
- # Calculate L1 Distance
- distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1)
- # Prediction: Get min distance index (Nearest neighbor)
- pred = tf.arg_min(distance, 0)
- accuracy = 0.
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # loop over test data
- for i in range(len(Xte)):
- # Get nearest neighbor
- nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
- # Get nearest neighbor class label and compare it to its true label
- print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
- "True Class:", np.argmax(Yte[i])
- # Calculate accuracy
- if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
- accuracy += 1./len(Xte)
- print "Done!"
- print "Accuracy:", accuracy
|