123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- """ Bi-directional Recurrent Neural Network.
- A Bi-directional Recurrent Neural Network (LSTM) implementation example using
- TensorFlow library. This example is using the MNIST database of handwritten
- digits (http://yann.lecun.com/exdb/mnist/)
- Links:
- [Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
- [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- import tensorflow as tf
- from tensorflow.contrib import rnn
- import numpy as np
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- '''
- To classify images using a bidirectional recurrent neural network, we consider
- every image row as a sequence of pixels. Because MNIST image shape is 28*28px,
- we will then handle 28 sequences of 28 steps for every sample.
- '''
- # Training Parameters
- learning_rate = 0.001
- training_steps = 10000
- batch_size = 128
- display_step = 200
- # Network Parameters
- num_input = 28 # MNIST data input (img shape: 28*28)
- timesteps = 28 # timesteps
- num_hidden = 128 # hidden layer num of features
- num_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- X = tf.placeholder("float", [None, timesteps, num_input])
- Y = tf.placeholder("float", [None, num_classes])
- # Define weights
- weights = {
- # Hidden layer weights => 2*n_hidden because of forward + backward cells
- 'out': tf.Variable(tf.random_normal([2*num_hidden, num_classes]))
- }
- biases = {
- 'out': tf.Variable(tf.random_normal([num_classes]))
- }
- def BiRNN(x, weights, biases):
- # Prepare data shape to match `rnn` function requirements
- # Current data input shape: (batch_size, timesteps, n_input)
- # Required shape: 'timesteps' tensors list of shape (batch_size, num_input)
- # Unstack to get a list of 'timesteps' tensors of shape (batch_size, num_input)
- x = tf.unstack(x, timesteps, 1)
- # Define lstm cells with tensorflow
- # Forward direction cell
- lstm_fw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
- # Backward direction cell
- lstm_bw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
- # Get lstm cell output
- try:
- outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
- dtype=tf.float32)
- except Exception: # Old TensorFlow version only returns outputs not states
- outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
- dtype=tf.float32)
- # Linear activation, using rnn inner loop last output
- return tf.matmul(outputs[-1], weights['out']) + biases['out']
- logits = BiRNN(X, weights, biases)
- prediction = tf.nn.softmax(logits)
- # Define loss and optimizer
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
- logits=logits, labels=Y))
- optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluate model (with test logits, for dropout to be disabled)
- correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- for step in range(1, training_steps+1):
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Reshape data to get 28 seq of 28 elements
- batch_x = batch_x.reshape((batch_size, timesteps, num_input))
- # Run optimization op (backprop)
- sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
- if step % display_step == 0 or step == 1:
- # Calculate batch loss and accuracy
- loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
- Y: batch_y})
- print("Step " + str(step) + ", Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc))
- print("Optimization Finished!")
- # Calculate accuracy for 128 mnist test images
- test_len = 128
- test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
- test_label = mnist.test.labels[:test_len]
- print("Testing Accuracy:", \
- sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))
|