123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- ''' Multi-GPU Training Example.
- Train a convolutional neural network on multiple GPU with TensorFlow.
- This example is using TensorFlow layers, see 'convolutional_network_raw' example
- for a raw TensorFlow implementation with variables.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import division, print_function, absolute_import
- import numpy as np
- import tensorflow as tf
- import time
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Training Parameters
- num_gpus = 2
- num_steps = 200
- learning_rate = 0.001
- batch_size = 1024
- display_step = 10
- # Network Parameters
- num_input = 784 # MNIST data input (img shape: 28*28)
- num_classes = 10 # MNIST total classes (0-9 digits)
- dropout = 0.75 # Dropout, probability to keep units
- # Build a convolutional neural network
- def conv_net(x, n_classes, dropout, reuse, is_training):
- # Define a scope for reusing the variables
- with tf.variable_scope('ConvNet', reuse=reuse):
- # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
- # Reshape to match picture format [Height x Width x Channel]
- # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
- x = tf.reshape(x, shape=[-1, 28, 28, 1])
- # Convolution Layer with 64 filters and a kernel size of 5
- x = tf.layers.conv2d(x, 64, 5, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- x = tf.layers.max_pooling2d(x, 2, 2)
- # Convolution Layer with 256 filters and a kernel size of 5
- x = tf.layers.conv2d(x, 256, 3, activation=tf.nn.relu)
- # Convolution Layer with 512 filters and a kernel size of 5
- x = tf.layers.conv2d(x, 512, 3, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- x = tf.layers.max_pooling2d(x, 2, 2)
- # Flatten the data to a 1-D vector for the fully connected layer
- x = tf.contrib.layers.flatten(x)
- # Fully connected layer (in contrib folder for now)
- x = tf.layers.dense(x, 2048)
- # Apply Dropout (if is_training is False, dropout is not applied)
- x = tf.layers.dropout(x, rate=dropout, training=is_training)
- # Fully connected layer (in contrib folder for now)
- x = tf.layers.dense(x, 1024)
- # Apply Dropout (if is_training is False, dropout is not applied)
- x = tf.layers.dropout(x, rate=dropout, training=is_training)
- # Output layer, class prediction
- out = tf.layers.dense(x, n_classes)
- # Because 'softmax_cross_entropy_with_logits' loss already apply
- # softmax, we only apply softmax to testing network
- out = tf.nn.softmax(out) if not is_training else out
- return out
- def average_gradients(tower_grads):
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
- # Average over the 'tower' dimension.
- grad = tf.concat(grads, 0)
- grad = tf.reduce_mean(grad, 0)
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
- return average_grads
- # By default, all variables will be placed on '/gpu:0'
- # So we need a custom device function, to assign all variables to '/cpu:0'
- # Note: If GPUs are peered, '/gpu:0' can be a faster option
- PS_OPS = ['Variable', 'VariableV2', 'AutoReloadVariable']
- def assign_to_device(device, ps_device='/cpu:0'):
- def _assign(op):
- node_def = op if isinstance(op, tf.NodeDef) else op.node_def
- if node_def.op in PS_OPS:
- return "/" + ps_device
- else:
- return device
- return _assign
- # Place all ops on CPU by default
- with tf.device('/cpu:0'):
- tower_grads = []
- reuse_vars = False
- # tf Graph input
- X = tf.placeholder(tf.float32, [None, num_input])
- Y = tf.placeholder(tf.float32, [None, num_classes])
- # Loop over all GPUs and construct their own computation graph
- for i in range(num_gpus):
- with tf.device(assign_to_device('/gpu:{}'.format(i), ps_device='/cpu:0')):
- # Split data between GPUs
- _x = X[i * batch_size: (i+1) * batch_size]
- _y = Y[i * batch_size: (i+1) * batch_size]
- # Because Dropout have different behavior at training and prediction time, we
- # need to create 2 distinct computation graphs that share the same weights.
- # Create a graph for training
- logits_train = conv_net(_x, num_classes, dropout,
- reuse=reuse_vars, is_training=True)
- # Create another graph for testing that reuse the same weights
- logits_test = conv_net(_x, num_classes, dropout,
- reuse=True, is_training=False)
- # Define loss and optimizer (with train logits, for dropout to take effect)
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
- logits=logits_train, labels=_y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- grads = optimizer.compute_gradients(loss_op)
- # Only first GPU compute accuracy
- if i == 0:
- # Evaluate model (with test logits, for dropout to be disabled)
- correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.argmax(_y, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- reuse_vars = True
- tower_grads.append(grads)
- tower_grads = average_gradients(tower_grads)
- train_op = optimizer.apply_gradients(tower_grads)
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Start Training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- # Keep training until reach max iterations
- for step in range(1, num_steps + 1):
- # Get a batch for each GPU
- batch_x, batch_y = mnist.train.next_batch(batch_size * num_gpus)
- # Run optimization op (backprop)
- ts = time.time()
- sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
- te = time.time() - ts
- if step % display_step == 0 or step == 1:
- # Calculate batch loss and accuracy
- loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
- Y: batch_y})
- print("Step " + str(step) + ": Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc) + ", %i Examples/sec" % int(len(batch_x)/te))
- step += 1
- print("Optimization Finished!")
- # Calculate accuracy for MNIST test images
- print("Testing Accuracy:", \
- np.mean([sess.run(accuracy, feed_dict={X: mnist.test.images[i:i+batch_size],
- Y: mnist.test.labels[i:i+batch_size]}) for i in range(0, len(mnist.test.images), batch_size)]))
|