123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- """ Build an Image Dataset in TensorFlow.
- For this example, you need to make your own set of images (JPEG).
- We will show 2 different ways to build that dataset:
- - From a root folder, that will have a sub-folder containing images for each class
- ```
- ROOT_FOLDER
- |-------- SUBFOLDER (CLASS 0)
- | |
- | | ----- image1.jpg
- | | ----- image2.jpg
- | | ----- etc...
- |
- |-------- SUBFOLDER (CLASS 1)
- | |
- | | ----- image1.jpg
- | | ----- image2.jpg
- | | ----- etc...
- ```
- - From a plain text file, that will list all images with their class ID:
- ```
- /path/to/image/1.jpg CLASS_ID
- /path/to/image/2.jpg CLASS_ID
- /path/to/image/3.jpg CLASS_ID
- /path/to/image/4.jpg CLASS_ID
- etc...
- ```
- Below, there are some parameters that you need to change (Marked 'CHANGE HERE'),
- such as the dataset path.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- import tensorflow as tf
- import os
- # Dataset Parameters - CHANGE HERE
- MODE = 'folder' # or 'file', if you choose a plain text file (see above).
- DATASET_PATH = '/path/to/dataset/' # the dataset file or root folder path.
- # Image Parameters
- N_CLASSES = 2 # CHANGE HERE, total number of classes
- IMG_HEIGHT = 64 # CHANGE HERE, the image height to be resized to
- IMG_WIDTH = 64 # CHANGE HERE, the image width to be resized to
- CHANNELS = 3 # The 3 color channels, change to 1 if grayscale
- # Reading the dataset
- # 2 modes: 'file' or 'folder'
- def read_images(dataset_path, mode, batch_size):
- imagepaths, labels = list(), list()
- if mode == 'file':
- # Read dataset file
- with open(dataset_path) as f:
- data = f.read().splitlines()
- for d in data:
- imagepaths.append(d.split(' ')[0])
- labels.append(int(d.split(' ')[1]))
- elif mode == 'folder':
- # An ID will be affected to each sub-folders by alphabetical order
- label = 0
- # List the directory
- try: # Python 2
- classes = sorted(os.walk(dataset_path).next()[1])
- except Exception: # Python 3
- classes = sorted(os.walk(dataset_path).__next__()[1])
- # List each sub-directory (the classes)
- for c in classes:
- c_dir = os.path.join(dataset_path, c)
- try: # Python 2
- walk = os.walk(c_dir).next()
- except Exception: # Python 3
- walk = os.walk(c_dir).__next__()
- # Add each image to the training set
- for sample in walk[2]:
- # Only keeps jpeg images
- if sample.endswith('.jpg') or sample.endswith('.jpeg'):
- imagepaths.append(os.path.join(c_dir, sample))
- labels.append(label)
- label += 1
- else:
- raise Exception("Unknown mode.")
- # Convert to Tensor
- imagepaths = tf.convert_to_tensor(imagepaths, dtype=tf.string)
- labels = tf.convert_to_tensor(labels, dtype=tf.int32)
- # Build a TF Queue, shuffle data
- image, label = tf.train.slice_input_producer([imagepaths, labels],
- shuffle=True)
- # Read images from disk
- image = tf.read_file(image)
- image = tf.image.decode_jpeg(image, channels=CHANNELS)
- # Resize images to a common size
- image = tf.image.resize_images(image, [IMG_HEIGHT, IMG_WIDTH])
- # Normalize
- image = image * 1.0/127.5 - 1.0
- # Create batches
- X, Y = tf.train.batch([image, label], batch_size=batch_size,
- capacity=batch_size * 8,
- num_threads=4)
- return X, Y
- # -----------------------------------------------
- # THIS IS A CLASSIC CNN (see examples, section 3)
- # -----------------------------------------------
- # Note that a few elements have changed (usage of queues).
- # Parameters
- learning_rate = 0.001
- num_steps = 10000
- batch_size = 128
- display_step = 100
- # Network Parameters
- dropout = 0.75 # Dropout, probability to keep units
- # Build the data input
- X, Y = read_images(DATASET_PATH, MODE, batch_size)
- # Create model
- def conv_net(x, n_classes, dropout, reuse, is_training):
- # Define a scope for reusing the variables
- with tf.variable_scope('ConvNet', reuse=reuse):
- # Convolution Layer with 32 filters and a kernel size of 5
- conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
- # Convolution Layer with 32 filters and a kernel size of 5
- conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
- # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
- conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
- # Flatten the data to a 1-D vector for the fully connected layer
- fc1 = tf.contrib.layers.flatten(conv2)
- # Fully connected layer (in contrib folder for now)
- fc1 = tf.layers.dense(fc1, 1024)
- # Apply Dropout (if is_training is False, dropout is not applied)
- fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
- # Output layer, class prediction
- out = tf.layers.dense(fc1, n_classes)
- # Because 'softmax_cross_entropy_with_logits' already apply softmax,
- # we only apply softmax to testing network
- out = tf.nn.softmax(out) if not is_training else out
- return out
- # Because Dropout have different behavior at training and prediction time, we
- # need to create 2 distinct computation graphs that share the same weights.
- # Create a graph for training
- logits_train = conv_net(X, N_CLASSES, dropout, reuse=False, is_training=True)
- # Create another graph for testing that reuse the same weights
- logits_test = conv_net(X, N_CLASSES, dropout, reuse=True, is_training=False)
- # Define loss and optimizer (with train logits, for dropout to take effect)
- loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
- logits=logits_train, labels=Y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluate model (with test logits, for dropout to be disabled)
- correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.cast(Y, tf.int64))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- # Saver object
- saver = tf.train.Saver()
- # Start training
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- # Start the data queue
- tf.train.start_queue_runners()
- # Training cycle
- for step in range(1, num_steps+1):
- if step % display_step == 0:
- # Run optimization and calculate batch loss and accuracy
- _, loss, acc = sess.run([train_op, loss_op, accuracy])
- print("Step " + str(step) + ", Minibatch Loss= " + \
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
- "{:.3f}".format(acc))
- else:
- # Only run the optimization op (backprop)
- sess.run(train_op)
- print("Optimization Finished!")
- # Save your model
- saver.save(sess, 'my_tf_model')
|