123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- '''
- A Bidirectional Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
- Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import print_function
- import tensorflow as tf
- from tensorflow.python.ops import rnn, rnn_cell
- import numpy as np
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- '''
- To classify images using a bidirectional recurrent neural network, we consider
- every image row as a sequence of pixels. Because MNIST image shape is 28*28px,
- we will then handle 28 sequences of 28 steps for every sample.
- '''
- # Parameters
- learning_rate = 0.001
- training_iters = 100000
- batch_size = 128
- display_step = 10
- # Network Parameters
- n_input = 28 # MNIST data input (img shape: 28*28)
- n_steps = 28 # timesteps
- n_hidden = 128 # hidden layer num of features
- n_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- x = tf.placeholder("float", [None, n_steps, n_input])
- y = tf.placeholder("float", [None, n_classes])
- # Define weights
- weights = {
- # Hidden layer weights => 2*n_hidden because of forward + backward cells
- 'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
- }
- biases = {
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- def BiRNN(x, weights, biases):
- # Prepare data shape to match `bidirectional_rnn` function requirements
- # Current data input shape: (batch_size, n_steps, n_input)
- # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
- # Permuting batch_size and n_steps
- x = tf.transpose(x, [1, 0, 2])
- # Reshape to (n_steps*batch_size, n_input)
- x = tf.reshape(x, [-1, n_input])
- # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
- x = tf.split(0, n_steps, x)
- # Define lstm cells with tensorflow
- # Forward direction cell
- lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # Backward direction cell
- lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # Get lstm cell output
- try:
- outputs, _, _ = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
- dtype=tf.float32)
- except Exception: # Old TensorFlow version only returns outputs not states
- outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
- dtype=tf.float32)
- # Linear activation, using rnn inner loop last output
- return tf.matmul(outputs[-1], weights['out']) + biases['out']
- pred = BiRNN(x, weights, biases)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- step = 1
- # Keep training until reach max iterations
- while step * batch_size < training_iters:
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- # Reshape data to get 28 seq of 28 elements
- batch_x = batch_x.reshape((batch_size, n_steps, n_input))
- # Run optimization op (backprop)
- sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
- if step % display_step == 0:
- # Calculate batch accuracy
- acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
- # Calculate batch loss
- loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
- print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
- "{:.6f}".format(loss) + ", Training Accuracy= " + \
- "{:.5f}".format(acc))
- step += 1
- print("Optimization Finished!")
- # Calculate accuracy for 128 mnist test images
- test_len = 128
- test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
- test_label = mnist.test.labels[:test_len]
- print("Testing Accuracy:", \
- sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
|