bidirectional_rnn.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. '''
  2. A Bidirectional Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
  3. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
  4. Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
  5. Author: Aymeric Damien
  6. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  7. '''
  8. from __future__ import print_function
  9. import tensorflow as tf
  10. from tensorflow.python.ops import rnn, rnn_cell
  11. import numpy as np
  12. # Import MNIST data
  13. from tensorflow.examples.tutorials.mnist import input_data
  14. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  15. '''
  16. To classify images using a bidirectional recurrent neural network, we consider
  17. every image row as a sequence of pixels. Because MNIST image shape is 28*28px,
  18. we will then handle 28 sequences of 28 steps for every sample.
  19. '''
  20. # Parameters
  21. learning_rate = 0.001
  22. training_iters = 100000
  23. batch_size = 128
  24. display_step = 10
  25. # Network Parameters
  26. n_input = 28 # MNIST data input (img shape: 28*28)
  27. n_steps = 28 # timesteps
  28. n_hidden = 128 # hidden layer num of features
  29. n_classes = 10 # MNIST total classes (0-9 digits)
  30. # tf Graph input
  31. x = tf.placeholder("float", [None, n_steps, n_input])
  32. y = tf.placeholder("float", [None, n_classes])
  33. # Define weights
  34. weights = {
  35. # Hidden layer weights => 2*n_hidden because of forward + backward cells
  36. 'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
  37. }
  38. biases = {
  39. 'out': tf.Variable(tf.random_normal([n_classes]))
  40. }
  41. def BiRNN(x, weights, biases):
  42. # Prepare data shape to match `bidirectional_rnn` function requirements
  43. # Current data input shape: (batch_size, n_steps, n_input)
  44. # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
  45. # Permuting batch_size and n_steps
  46. x = tf.transpose(x, [1, 0, 2])
  47. # Reshape to (n_steps*batch_size, n_input)
  48. x = tf.reshape(x, [-1, n_input])
  49. # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
  50. x = tf.split(0, n_steps, x)
  51. # Define lstm cells with tensorflow
  52. # Forward direction cell
  53. lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
  54. # Backward direction cell
  55. lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
  56. # Get lstm cell output
  57. try:
  58. outputs, _, _ = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
  59. dtype=tf.float32)
  60. except Exception: # Old TensorFlow version only returns outputs not states
  61. outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
  62. dtype=tf.float32)
  63. # Linear activation, using rnn inner loop last output
  64. return tf.matmul(outputs[-1], weights['out']) + biases['out']
  65. pred = BiRNN(x, weights, biases)
  66. # Define loss and optimizer
  67. cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
  68. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
  69. # Evaluate model
  70. correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
  71. accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
  72. # Initializing the variables
  73. init = tf.initialize_all_variables()
  74. # Launch the graph
  75. with tf.Session() as sess:
  76. sess.run(init)
  77. step = 1
  78. # Keep training until reach max iterations
  79. while step * batch_size < training_iters:
  80. batch_x, batch_y = mnist.train.next_batch(batch_size)
  81. # Reshape data to get 28 seq of 28 elements
  82. batch_x = batch_x.reshape((batch_size, n_steps, n_input))
  83. # Run optimization op (backprop)
  84. sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
  85. if step % display_step == 0:
  86. # Calculate batch accuracy
  87. acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
  88. # Calculate batch loss
  89. loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
  90. print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
  91. "{:.6f}".format(loss) + ", Training Accuracy= " + \
  92. "{:.5f}".format(acc))
  93. step += 1
  94. print("Optimization Finished!")
  95. # Calculate accuracy for 128 mnist test images
  96. test_len = 128
  97. test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
  98. test_label = mnist.test.labels[:test_len]
  99. print("Testing Accuracy:", \
  100. sess.run(accuracy, feed_dict={x: test_data, y: test_label}))