123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- '''
- Graph and Loss visualization using Tensorboard.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- from __future__ import print_function
- import tensorflow as tf
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # Parameters
- learning_rate = 0.01
- training_epochs = 25
- batch_size = 100
- display_step = 1
- logs_path = '/tmp/tensorflow_logs/example'
- # Network Parameters
- n_hidden_1 = 256 # 1st layer number of features
- n_hidden_2 = 256 # 2nd layer number of features
- n_input = 784 # MNIST data input (img shape: 28*28)
- n_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph Input
- # mnist data image of shape 28*28=784
- x = tf.placeholder(tf.float32, [None, 784], name='InputData')
- # 0-9 digits recognition => 10 classes
- y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
- # Create model
- def multilayer_perceptron(x, weights, biases):
- # Hidden layer with RELU activation
- layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
- layer_1 = tf.nn.relu(layer_1)
- # Create a summary to visualize the first layer ReLU activation
- tf.histogram_summary("relu1", layer_1)
- # Hidden layer with RELU activation
- layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
- layer_2 = tf.nn.relu(layer_2)
- # Create another summary to visualize the second layer ReLU activation
- tf.histogram_summary("relu2", layer_2)
- # Output layer
- out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
- return out_layer
- # Store layers weight & bias
- weights = {
- 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'),
- 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'),
- 'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3')
- }
- biases = {
- 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'),
- 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'),
- 'b3': tf.Variable(tf.random_normal([n_classes]), name='b3')
- }
- # Encapsulating all ops into scopes, making Tensorboard's Graph
- # Visualization more convenient
- with tf.name_scope('Model'):
- # Build model
- pred = multilayer_perceptron(x, weights, biases)
- with tf.name_scope('Loss'):
- # Softmax Cross entropy (cost function)
- loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- with tf.name_scope('SGD'):
- # Gradient Descent
- optimizer = tf.train.GradientDescentOptimizer(learning_rate)
- # Op to calculate every variable gradient
- grads = tf.gradients(loss, tf.trainable_variables())
- grads = list(zip(grads, tf.trainable_variables()))
- # Op to update all variables according to their gradient
- apply_grads = optimizer.apply_gradients(grads_and_vars=grads)
- with tf.name_scope('Accuracy'):
- # Accuracy
- acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
- acc = tf.reduce_mean(tf.cast(acc, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Create a summary to monitor cost tensor
- tf.scalar_summary("loss", loss)
- # Create a summary to monitor accuracy tensor
- tf.scalar_summary("accuracy", acc)
- # Create summaries to visualize weights
- for var in tf.trainable_variables():
- tf.histogram_summary(var.name, var)
- # Summarize all gradients
- for grad, var in grads:
- tf.histogram_summary(var.name + '/gradient', grad)
- # Merge all summaries into a single op
- merged_summary_op = tf.merge_all_summaries()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # op to write logs to Tensorboard
- summary_writer = tf.train.SummaryWriter(logs_path,
- graph=tf.get_default_graph())
- # Training cycle
- for epoch in range(training_epochs):
- avg_cost = 0.
- total_batch = int(mnist.train.num_examples/batch_size)
- # Loop over all batches
- for i in range(total_batch):
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop), cost op (to get loss value)
- # and summary nodes
- _, c, summary = sess.run([apply_grads, loss, merged_summary_op],
- feed_dict={x: batch_xs, y: batch_ys})
- # Write logs at every iteration
- summary_writer.add_summary(summary, epoch * total_batch + i)
- # Compute average loss
- avg_cost += c / total_batch
- # Display logs per epoch step
- if (epoch+1) % display_step == 0:
- print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
- print("Optimization Finished!")
- # Test model
- # Calculate accuracy
- print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels}))
- print("Run the command line:\n" \
- "--> tensorboard --logdir=/tmp/tensorflow_logs " \
- "\nThen open http://0.0.0.0:6006/ into your web browser")
|