12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- '''
- Basic Multi GPU computation example using TensorFlow library.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- '''
- This tutorial requires your machine to have 2 GPUs
- "/cpu:0": The CPU of your machine.
- "/gpu:0": The first GPU of your machine
- "/gpu:1": The second GPU of your machine
- '''
- from __future__ import print_function
- import numpy as np
- import tensorflow as tf
- import datetime
- # Processing Units logs
- log_device_placement = True
- # Num of multiplications to perform
- n = 10
- '''
- Example: compute A^n + B^n on 2 GPUs
- Results on 8 cores with 2 GTX-980:
- * Single GPU computation time: 0:00:11.277449
- * Multi GPU computation time: 0:00:07.131701
- '''
- # Create random large matrix
- A = np.random.rand(1e4, 1e4).astype('float32')
- B = np.random.rand(1e4, 1e4).astype('float32')
- # Create a graph to store results
- c1 = []
- c2 = []
- def matpow(M, n):
- if n < 1: #Abstract cases where n < 1
- return M
- else:
- return tf.matmul(M, matpow(M, n-1))
- '''
- Single GPU computing
- '''
- with tf.device('/gpu:0'):
- a = tf.constant(A)
- b = tf.constant(B)
- # Compute A^n and B^n and store results in c1
- c1.append(matpow(a, n))
- c1.append(matpow(b, n))
- with tf.device('/cpu:0'):
- sum = tf.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n
- t1_1 = datetime.datetime.now()
- with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
- # Run the op.
- sess.run(sum)
- t2_1 = datetime.datetime.now()
- '''
- Multi GPU computing
- '''
- # GPU:0 computes A^n
- with tf.device('/gpu:0'):
- # Compute A^n and store result in c2
- a = tf.constant(A)
- c2.append(matpow(a, n))
- # GPU:1 computes B^n
- with tf.device('/gpu:1'):
- # Compute B^n and store result in c2
- b = tf.constant(B)
- c2.append(matpow(b, n))
- with tf.device('/cpu:0'):
- sum = tf.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n
- t1_2 = datetime.datetime.now()
- with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
- # Run the op.
- sess.run(sum)
- t2_2 = datetime.datetime.now()
- print("Single GPU computation time: " + str(t2_1-t1_1))
- print("Multi GPU computation time: " + str(t2_2-t1_2))
|