123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- '''
- A Reccurent Neural Network (LSTM) implementation example using TensorFlow library.
- This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
- Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- from tensorflow.models.rnn import rnn, rnn_cell
- import numpy as np
- '''
- To classify images using a reccurent neural network, we consider every image row as a sequence of pixels.
- Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample.
- '''
- # Parameters
- learning_rate = 0.001
- training_iters = 100000
- batch_size = 128
- display_step = 10
- # Network Parameters
- n_input = 28 # MNIST data input (img shape: 28*28)
- n_steps = 28 # timesteps
- n_hidden = 128 # hidden layer num of features
- n_classes = 10 # MNIST total classes (0-9 digits)
- # tf Graph input
- x = tf.placeholder("float", [None, n_steps, n_input])
- # Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
- istate = tf.placeholder("float", [None, 2*n_hidden])
- y = tf.placeholder("float", [None, n_classes])
- # Define weights
- weights = {
- 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
- 'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
- }
- biases = {
- 'hidden': tf.Variable(tf.random_normal([n_hidden])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- def RNN(_X, _istate, _weights, _biases):
- # input shape: (batch_size, n_steps, n_input)
- _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
- # Reshape to prepare input to hidden activation
- _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
- # Linear activation
- _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
- # Define a lstm cell with tensorflow
- lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
- # Split data because rnn cell needs a list of inputs for the RNN inner loop
- _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
- # Get lstm cell output
- outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
- # Linear activation
- # Get inner loop last output
- return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
- pred = RNN(x, istate, weights, biases)
- # Define loss and optimizer
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
- # Evaluate model
- correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- step = 1
- # Keep training until reach max iterations
- while step * batch_size < training_iters:
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Reshape data to get 28 seq of 28 elements
- batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
- # Fit training using batch data
- sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
- istate: np.zeros((batch_size, 2*n_hidden))})
- if step % display_step == 0:
- # Calculate batch accuracy
- acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
- istate: np.zeros((batch_size, 2*n_hidden))})
- # Calculate batch loss
- loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
- istate: np.zeros((batch_size, 2*n_hidden))})
- print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
- ", Training Accuracy= " + "{:.5f}".format(acc)
- step += 1
- print "Optimization Finished!"
- # Calculate accuracy for 256 mnist test images
- test_len = 256
- test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
- test_label = mnist.test.labels[:test_len]
- print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
- istate: np.zeros((test_len, 2*n_hidden))})
|