1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- # Import MINST data
- import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
- import tensorflow as tf
- # Parameters
- learning_rate = 0.001
- training_epochs = 3
- batch_size = 64
- display_batch = 200 #set to 0 to turn off
- display_step = 1
- #Network Parameters
- n_input = 784 #MNIST data input
- n_classes = 10 #MNIST total classes
- # Create model
- x = tf.placeholder("float", [None, n_input])
- y = tf.placeholder("float", [None, n_classes])
- def conv2d(img, w, b):
- return tf.nn.relu(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME') + b)
- def max_pool(img, k):
- return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
- def conv_net(_X, _weights, _biases):
- _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
- conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
- conv1 = max_pool(conv1, k=2)
- conv1 = tf.nn.dropout(conv1, 0.75)
- conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
- conv2 = max_pool(conv2, k=2)
- conv2 = tf.nn.dropout(conv2, 0.75)
- dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]])
- dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'])
- dense1 = tf.nn.dropout(dense1, 0.75)
- out = tf.matmul(dense1, _weights['out']) + _biases['out']
- return out
- weights = {
- 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
- 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
- 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
- 'out': tf.Variable(tf.random_normal([1024, 10]))
- }
- biases = {
- 'bc1': tf.Variable(tf.random_normal([32])),
- 'bc2': tf.Variable(tf.random_normal([64])),
- 'bd1': tf.Variable(tf.random_normal([1024])),
- 'out': tf.Variable(tf.random_normal([n_classes]))
- }
- pred = conv_net(x, weights, biases)
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
- # Train
- #load mnist data
- init = tf.initialize_all_variables()
- with tf.Session() as sess:
- sess.run(init)
- #one epoch can take a long time on CPU
- for epoch in range(training_epochs):
- avg_cost = 0.
- total_batch = int(mnist.train.num_examples/batch_size)
- for i in range(total_batch):
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
- avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
- if i % display_batch == 0 and display_batch > 0:
- print "Epoch:", '%04d' % (epoch+1), "Batch " + str(i) + "/" + str(total_batch), "cost=", \
- "{:.9f}".format(sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}))
- if epoch % display_step == 0:
- print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
- print "Optimization Finished!"
- # Test trained model
- correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
|