convolutional_network.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. # Import MINST data
  2. import input_data
  3. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  4. import tensorflow as tf
  5. # Parameters
  6. learning_rate = 0.001
  7. training_epochs = 3
  8. batch_size = 64
  9. display_batch = 200 #set to 0 to turn off
  10. display_step = 1
  11. #Network Parameters
  12. n_input = 784 #MNIST data input
  13. n_classes = 10 #MNIST total classes
  14. # Create model
  15. x = tf.placeholder("float", [None, n_input])
  16. y = tf.placeholder("float", [None, n_classes])
  17. def conv2d(img, w, b):
  18. return tf.nn.relu(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME') + b)
  19. def max_pool(img, k):
  20. return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
  21. def conv_net(_X, _weights, _biases):
  22. _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
  23. conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
  24. conv1 = max_pool(conv1, k=2)
  25. conv1 = tf.nn.dropout(conv1, 0.75)
  26. conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
  27. conv2 = max_pool(conv2, k=2)
  28. conv2 = tf.nn.dropout(conv2, 0.75)
  29. dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]])
  30. dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'])
  31. dense1 = tf.nn.dropout(dense1, 0.75)
  32. out = tf.matmul(dense1, _weights['out']) + _biases['out']
  33. return out
  34. weights = {
  35. 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
  36. 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
  37. 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
  38. 'out': tf.Variable(tf.random_normal([1024, 10]))
  39. }
  40. biases = {
  41. 'bc1': tf.Variable(tf.random_normal([32])),
  42. 'bc2': tf.Variable(tf.random_normal([64])),
  43. 'bd1': tf.Variable(tf.random_normal([1024])),
  44. 'out': tf.Variable(tf.random_normal([n_classes]))
  45. }
  46. pred = conv_net(x, weights, biases)
  47. cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
  48. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
  49. # Train
  50. #load mnist data
  51. init = tf.initialize_all_variables()
  52. with tf.Session() as sess:
  53. sess.run(init)
  54. #one epoch can take a long time on CPU
  55. for epoch in range(training_epochs):
  56. avg_cost = 0.
  57. total_batch = int(mnist.train.num_examples/batch_size)
  58. for i in range(total_batch):
  59. batch_xs, batch_ys = mnist.train.next_batch(batch_size)
  60. sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
  61. avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
  62. if i % display_batch == 0 and display_batch > 0:
  63. print "Epoch:", '%04d' % (epoch+1), "Batch " + str(i) + "/" + str(total_batch), "cost=", \
  64. "{:.9f}".format(sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}))
  65. if epoch % display_step == 0:
  66. print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
  67. print "Optimization Finished!"
  68. # Test trained model
  69. correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
  70. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  71. print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})