multilayer_perceptron.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Import MINST data
  2. import input_data
  3. mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
  4. import tensorflow as tf
  5. # Parameters
  6. learning_rate = 0.001
  7. training_epochs = 15
  8. batch_size = 100
  9. display_step = 1
  10. #Network Parameters
  11. n_hidden_1 = 256
  12. n_hidden_2 = 256
  13. n_input = 784 #MNIST data input
  14. n_classes = 10 #MNIST total classes
  15. # Create model
  16. x = tf.placeholder("float", [None, n_input])
  17. y = tf.placeholder("float", [None, n_classes])
  18. def multilayer_perceptron(_X, _weights, _biases):
  19. layer_1 = tf.nn.relu(tf.matmul(_X, _weights['h1']) + _biases['b1']) #Hidden layer with RELU activation
  20. layer_2 = tf.nn.relu(tf.matmul(layer_1, _weights['h2']) + _biases['b2']) #Hidden layer with RELU activation
  21. return tf.matmul(layer_2, weights['out']) + biases['out']
  22. weights = {
  23. 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
  24. 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
  25. 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
  26. }
  27. biases = {
  28. 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
  29. 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
  30. 'out': tf.Variable(tf.random_normal([n_classes]))
  31. }
  32. pred = multilayer_perceptron(x, weights, biases)
  33. cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
  34. optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
  35. # Train
  36. init = tf.initialize_all_variables()
  37. with tf.Session() as sess:
  38. sess.run(init)
  39. for epoch in range(training_epochs):
  40. avg_cost = 0.
  41. total_batch = int(mnist.train.num_examples/batch_size)
  42. for i in range(total_batch):
  43. batch_xs, batch_ys = mnist.train.next_batch(batch_size)
  44. sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
  45. avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
  46. if epoch % display_step == 0:
  47. print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
  48. print "Optimization Finished!"
  49. # Test trained model
  50. correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
  51. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  52. print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})