12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- '''
- A linear regression learning algorithm example using TensorFlow library.
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
- import tensorflow as tf
- import numpy
- import matplotlib.pyplot as plt
- rng = numpy.random
- # Parameters
- learning_rate = 0.01
- training_epochs = 2000
- display_step = 50
- # Training Data
- train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
- train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
- n_samples = train_X.shape[0]
- # tf Graph Input
- X = tf.placeholder("float")
- Y = tf.placeholder("float")
- # Create Model
- # Set model weights
- W = tf.Variable(rng.randn(), name="weight")
- b = tf.Variable(rng.randn(), name="bias")
- # Construct a linear model
- activation = tf.add(tf.mul(X, W), b)
- # Minimize the squared errors
- cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
- optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
- # Initializing the variables
- init = tf.initialize_all_variables()
- # Launch the graph
- with tf.Session() as sess:
- sess.run(init)
- # Fit all training data
- for epoch in range(training_epochs):
- for (x, y) in zip(train_X, train_Y):
- sess.run(optimizer, feed_dict={X: x, Y: y})
- #Display logs per epoch step
- if epoch % display_step == 0:
- print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
- "W=", sess.run(W), "b=", sess.run(b)
- print "Optimization Finished!"
- print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b)
- #Graphic display
- plt.plot(train_X, train_Y, 'ro', label='Original data')
- plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
- plt.legend()
- plt.show()
|