123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- """ Random Forest.
- Implement Random Forest algorithm with TensorFlow, and apply it to classify
- handwritten digit images. This example is using the MNIST database of
- handwritten digits as training samples (http://yann.lecun.com/exdb/mnist/).
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import print_function
- import tensorflow as tf
- from tensorflow.contrib.tensor_forest.python import tensor_forest
- from tensorflow.python.ops import resources
- # Ignore all GPUs, tf random forest does not benefit from it.
- import os
- os.environ["CUDA_VISIBLE_DEVICES"] = ""
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
- # Parameters
- num_steps = 500 # Total steps to train
- batch_size = 1024 # The number of samples per batch
- num_classes = 10 # The 10 digits
- num_features = 784 # Each image is 28x28 pixels
- num_trees = 10
- max_nodes = 1000
- # Input and Target data
- X = tf.placeholder(tf.float32, shape=[None, num_features])
- # For random forest, labels must be integers (the class id)
- Y = tf.placeholder(tf.int32, shape=[None])
- # Random Forest Parameters
- hparams = tensor_forest.ForestHParams(num_classes=num_classes,
- num_features=num_features,
- num_trees=num_trees,
- max_nodes=max_nodes).fill()
- # Build the Random Forest
- forest_graph = tensor_forest.RandomForestGraphs(hparams)
- # Get training graph and loss
- train_op = forest_graph.training_graph(X, Y)
- loss_op = forest_graph.training_loss(X, Y)
- # Measure the accuracy
- infer_op, _, _ = forest_graph.inference_graph(X)
- correct_prediction = tf.equal(tf.argmax(infer_op, 1), tf.cast(Y, tf.int64))
- accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- # Initialize the variables (i.e. assign their default value) and forest resources
- init_vars = tf.group(tf.global_variables_initializer(),
- resources.initialize_resources(resources.shared_resources()))
- # Start TensorFlow session
- sess = tf.Session()
- # Run the initializer
- sess.run(init_vars)
- # Training
- for i in range(1, num_steps + 1):
- # Prepare Data
- # Get the next batch of MNIST data (only images are needed, not labels)
- batch_x, batch_y = mnist.train.next_batch(batch_size)
- _, l = sess.run([train_op, loss_op], feed_dict={X: batch_x, Y: batch_y})
- if i % 50 == 0 or i == 1:
- acc = sess.run(accuracy_op, feed_dict={X: batch_x, Y: batch_y})
- print('Step %i, Loss: %f, Acc: %f' % (i, l, acc))
- # Test Model
- test_x, test_y = mnist.test.images, mnist.test.labels
- print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: test_x, Y: test_y}))
|