123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- """ Word2Vec.
- Implement Word2Vec algorithm to compute vector representations of words.
- This example is using a small chunk of Wikipedia articles to train from.
- References:
- - Mikolov, Tomas et al. "Efficient Estimation of Word Representations
- in Vector Space.", 2013.
- Links:
- - [Word2Vec] https://arxiv.org/pdf/1301.3781.pdf
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- """
- from __future__ import division, print_function, absolute_import
- import collections
- import os
- import random
- import urllib
- import zipfile
- import numpy as np
- import tensorflow as tf
- # Training Parameters
- learning_rate = 0.1
- batch_size = 128
- num_steps = 3000000
- display_step = 10000
- eval_step = 200000
- # Evaluation Parameters
- eval_words = ['five', 'of', 'going', 'hardware', 'american', 'britain']
- # Word2Vec Parameters
- embedding_size = 200 # Dimension of the embedding vector
- max_vocabulary_size = 50000 # Total number of different words in the vocabulary
- min_occurrence = 10 # Remove all words that does not appears at least n times
- skip_window = 3 # How many words to consider left and right
- num_skips = 2 # How many times to reuse an input to generate a label
- num_sampled = 64 # Number of negative examples to sample
- # Download a small chunk of Wikipedia articles collection
- url = 'http://mattmahoney.net/dc/text8.zip'
- data_path = 'text8.zip'
- if not os.path.exists(data_path):
- print("Downloading the dataset... (It may take some time)")
- filename, _ = urllib.urlretrieve(url, data_path)
- print("Done!")
- # Unzip the dataset file. Text has already been processed
- with zipfile.ZipFile(data_path) as f:
- text_words = f.read(f.namelist()[0]).lower().split()
- # Build the dictionary and replace rare words with UNK token
- count = [('UNK', -1)]
- # Retrieve the most common words
- count.extend(collections.Counter(text_words).most_common(max_vocabulary_size - 1))
- # Remove samples with less than 'min_occurrence' occurrences
- for i in range(len(count) - 1, -1, -1):
- if count[i][1] < min_occurrence:
- count.pop(i)
- else:
- # The collection is ordered, so stop when 'min_occurrence' is reached
- break
- # Compute the vocabulary size
- vocabulary_size = len(count)
- # Assign an id to each word
- word2id = dict()
- for i, (word, _)in enumerate(count):
- word2id[word] = i
- data = list()
- unk_count = 0
- for word in text_words:
- # Retrieve a word id, or assign it index 0 ('UNK') if not in dictionary
- index = word2id.get(word, 0)
- if index == 0:
- unk_count += 1
- data.append(index)
- count[0] = ('UNK', unk_count)
- id2word = dict(zip(word2id.values(), word2id.keys()))
- print("Words count:", len(text_words))
- print("Unique words:", len(set(text_words)))
- print("Vocabulary size:", vocabulary_size)
- print("Most common words:", count[:10])
- data_index = 0
- # Generate training batch for the skip-gram model
- def next_batch(batch_size, num_skips, skip_window):
- global data_index
- assert batch_size % num_skips == 0
- assert num_skips <= 2 * skip_window
- batch = np.ndarray(shape=(batch_size), dtype=np.int32)
- labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
- # get window size (words left and right + current one)
- span = 2 * skip_window + 1
- buffer = collections.deque(maxlen=span)
- if data_index + span > len(data):
- data_index = 0
- buffer.extend(data[data_index:data_index + span])
- data_index += span
- for i in range(batch_size // num_skips):
- context_words = [w for w in range(span) if w != skip_window]
- words_to_use = random.sample(context_words, num_skips)
- for j, context_word in enumerate(words_to_use):
- batch[i * num_skips + j] = buffer[skip_window]
- labels[i * num_skips + j, 0] = buffer[context_word]
- if data_index == len(data):
- buffer.extend(data[0:span])
- data_index = span
- else:
- buffer.append(data[data_index])
- data_index += 1
- # Backtrack a little bit to avoid skipping words in the end of a batch
- data_index = (data_index + len(data) - span) % len(data)
- return batch, labels
- # Input data
- X = tf.placeholder(tf.int32, shape=[None])
- # Input label
- Y = tf.placeholder(tf.int32, shape=[None, 1])
- # Ensure the following ops & var are assigned on CPU
- # (some ops are not compatible on GPU)
- with tf.device('/cpu:0'):
- # Create the embedding variable (each row represent a word embedding vector)
- embedding = tf.Variable(tf.random_normal([vocabulary_size, embedding_size]))
- # Lookup the corresponding embedding vectors for each sample in X
- X_embed = tf.nn.embedding_lookup(embedding, X)
- # Construct the variables for the NCE loss
- nce_weights = tf.Variable(tf.random_normal([vocabulary_size, embedding_size]))
- nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
- # Compute the average NCE loss for the batch
- loss_op = tf.reduce_mean(
- tf.nn.nce_loss(weights=nce_weights,
- biases=nce_biases,
- labels=Y,
- inputs=X_embed,
- num_sampled=num_sampled,
- num_classes=vocabulary_size))
- # Define the optimizer
- optimizer = tf.train.GradientDescentOptimizer(learning_rate)
- train_op = optimizer.minimize(loss_op)
- # Evaluation
- # Compute the cosine similarity between input data embedding and every embedding vectors
- X_embed_norm = X_embed / tf.sqrt(tf.reduce_sum(tf.square(X_embed)))
- embedding_norm = embedding / tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keepdims=True))
- cosine_sim_op = tf.matmul(X_embed_norm, embedding_norm, transpose_b=True)
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
- with tf.Session() as sess:
- # Run the initializer
- sess.run(init)
- # Testing data
- x_test = np.array([word2id[w] for w in eval_words])
- average_loss = 0
- for step in xrange(1, num_steps + 1):
- # Get a new batch of data
- batch_x, batch_y = next_batch(batch_size, num_skips, skip_window)
- # Run training op
- _, loss = sess.run([train_op, loss_op], feed_dict={X: batch_x, Y: batch_y})
- average_loss += loss
- if step % display_step == 0 or step == 1:
- if step > 1:
- average_loss /= display_step
- print("Step " + str(step) + ", Average Loss= " + \
- "{:.4f}".format(average_loss))
- average_loss = 0
- # Evaluation
- if step % eval_step == 0 or step == 1:
- print("Evaluation...")
- sim = sess.run(cosine_sim_op, feed_dict={X: x_test})
- for i in xrange(len(eval_words)):
- top_k = 8 # number of nearest neighbors
- nearest = (-sim[i, :]).argsort()[1:top_k + 1]
- log_str = '"%s" nearest neighbors:' % eval_words[i]
- for k in xrange(top_k):
- log_str = '%s %s,' % (log_str, id2word[nearest[k]])
- print(log_str)
|