linear_regression.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import tensorflow as tf
  2. import numpy
  3. import matplotlib.pyplot as plt
  4. rng = numpy.random
  5. # Parameters
  6. learning_rate = 0.01
  7. training_epochs = 2000
  8. display_step = 50
  9. # Training Data
  10. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  11. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  12. # Create Model
  13. W = tf.Variable(rng.randn(), name="weight")
  14. b = tf.Variable(rng.randn(), name="bias")
  15. X = tf.placeholder("float")
  16. Y = tf.placeholder("float")
  17. n_samples = train_X.shape[0]
  18. activation = tf.add(tf.mul(X, W), b) #linear
  19. cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2
  20. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
  21. init = tf.initialize_all_variables()
  22. with tf.Session() as sess:
  23. sess.run(init)
  24. for epoch in range(training_epochs):
  25. for (x, y) in zip(train_X, train_Y):
  26. sess.run(optimizer, feed_dict={X: x, Y: y})
  27. if epoch % display_step == 0:
  28. print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
  29. "W=", sess.run(W), "b=", sess.run(b)
  30. print "Optimization Finished!"
  31. print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b)
  32. plt.plot(train_X, train_Y, 'ro', label='Original data')
  33. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  34. plt.legend()
  35. plt.show()