input_data.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. """Functions for downloading and reading MNIST data."""
  2. from __future__ import print_function
  3. import gzip
  4. import os
  5. import urllib
  6. import numpy
  7. SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
  8. def maybe_download(filename, work_directory):
  9. """Download the data from Yann's website, unless it's already here."""
  10. if not os.path.exists(work_directory):
  11. os.mkdir(work_directory)
  12. filepath = os.path.join(work_directory, filename)
  13. if not os.path.exists(filepath):
  14. filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
  15. statinfo = os.stat(filepath)
  16. print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  17. return filepath
  18. def _read32(bytestream):
  19. dt = numpy.dtype(numpy.uint32).newbyteorder('>')
  20. return numpy.frombuffer(bytestream.read(4), dtype=dt)
  21. def extract_images(filename):
  22. """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  23. print('Extracting', filename)
  24. with gzip.open(filename) as bytestream:
  25. magic = _read32(bytestream)
  26. if magic != 2051:
  27. raise ValueError(
  28. 'Invalid magic number %d in MNIST image file: %s' %
  29. (magic, filename))
  30. num_images = _read32(bytestream)
  31. rows = _read32(bytestream)
  32. cols = _read32(bytestream)
  33. buf = bytestream.read(rows * cols * num_images)
  34. data = numpy.frombuffer(buf, dtype=numpy.uint8)
  35. data = data.reshape(num_images, rows, cols, 1)
  36. return data
  37. def dense_to_one_hot(labels_dense, num_classes=10):
  38. """Convert class labels from scalars to one-hot vectors."""
  39. num_labels = labels_dense.shape[0]
  40. index_offset = numpy.arange(num_labels) * num_classes
  41. labels_one_hot = numpy.zeros((num_labels, num_classes))
  42. labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  43. return labels_one_hot
  44. def extract_labels(filename, one_hot=False):
  45. """Extract the labels into a 1D uint8 numpy array [index]."""
  46. print('Extracting', filename)
  47. with gzip.open(filename) as bytestream:
  48. magic = _read32(bytestream)
  49. if magic != 2049:
  50. raise ValueError(
  51. 'Invalid magic number %d in MNIST label file: %s' %
  52. (magic, filename))
  53. num_items = _read32(bytestream)
  54. buf = bytestream.read(num_items)
  55. labels = numpy.frombuffer(buf, dtype=numpy.uint8)
  56. if one_hot:
  57. return dense_to_one_hot(labels)
  58. return labels
  59. class DataSet(object):
  60. def __init__(self, images, labels, fake_data=False):
  61. if fake_data:
  62. self._num_examples = 10000
  63. else:
  64. assert images.shape[0] == labels.shape[0], (
  65. "images.shape: %s labels.shape: %s" % (images.shape,
  66. labels.shape))
  67. self._num_examples = images.shape[0]
  68. # Convert shape from [num examples, rows, columns, depth]
  69. # to [num examples, rows*columns] (assuming depth == 1)
  70. assert images.shape[3] == 1
  71. images = images.reshape(images.shape[0],
  72. images.shape[1] * images.shape[2])
  73. # Convert from [0, 255] -> [0.0, 1.0].
  74. images = images.astype(numpy.float32)
  75. images = numpy.multiply(images, 1.0 / 255.0)
  76. self._images = images
  77. self._labels = labels
  78. self._epochs_completed = 0
  79. self._index_in_epoch = 0
  80. @property
  81. def images(self):
  82. return self._images
  83. @property
  84. def labels(self):
  85. return self._labels
  86. @property
  87. def num_examples(self):
  88. return self._num_examples
  89. @property
  90. def epochs_completed(self):
  91. return self._epochs_completed
  92. def next_batch(self, batch_size, fake_data=False):
  93. """Return the next `batch_size`examples from this data set."""
  94. if fake_data:
  95. fake_image = [1.0 for _ in xrange(784)]
  96. fake_label = 0
  97. return [fake_image for _ in xrange(batch_size)], [
  98. fake_label for _ in xrange(batch_size)]
  99. start = self._index_in_epoch
  100. self._index_in_epoch += batch_size
  101. if self._index_in_epoch > self._num_examples:
  102. # Finished epoch
  103. self._epochs_completed += 1
  104. # Shuffle the data
  105. perm = numpy.arange(self._num_examples)
  106. numpy.random.shuffle(perm)
  107. self._images = self._images[perm]
  108. self._labels = self._labels[perm]
  109. # Start next epoch
  110. start = 0
  111. self._index_in_epoch = batch_size
  112. assert batch_size <= self._num_examples
  113. end = self._index_in_epoch
  114. return self._images[start:end], self._labels[start:end]
  115. def read_data_sets(train_dir, fake_data=False, one_hot=False):
  116. class DataSets(object):
  117. pass
  118. data_sets = DataSets()
  119. if fake_data:
  120. data_sets.train = DataSet([], [], fake_data=True)
  121. data_sets.validation = DataSet([], [], fake_data=True)
  122. data_sets.test = DataSet([], [], fake_data=True)
  123. return data_sets
  124. TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
  125. TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
  126. TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
  127. TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
  128. VALIDATION_SIZE = 5000
  129. local_file = maybe_download(TRAIN_IMAGES, train_dir)
  130. train_images = extract_images(local_file)
  131. local_file = maybe_download(TRAIN_LABELS, train_dir)
  132. train_labels = extract_labels(local_file, one_hot=one_hot)
  133. local_file = maybe_download(TEST_IMAGES, train_dir)
  134. test_images = extract_images(local_file)
  135. local_file = maybe_download(TEST_LABELS, train_dir)
  136. test_labels = extract_labels(local_file, one_hot=one_hot)
  137. validation_images = train_images[:VALIDATION_SIZE]
  138. validation_labels = train_labels[:VALIDATION_SIZE]
  139. train_images = train_images[VALIDATION_SIZE:]
  140. train_labels = train_labels[VALIDATION_SIZE:]
  141. data_sets.train = DataSet(train_images, train_labels)
  142. data_sets.validation = DataSet(validation_images, validation_labels)
  143. data_sets.test = DataSet(test_images, test_labels)
  144. return data_sets