|
@@ -212,6 +212,7 @@ def resnet_v2(inputs,
|
|
|
if num_classes is not None:
|
|
|
end_points['predictions'] = slim.softmax(net, scope='predictions')
|
|
|
return logits, end_points
|
|
|
+resnet_v2.default_image_size = 224
|
|
|
|
|
|
|
|
|
def resnet_v2_50(inputs,
|
|
@@ -234,7 +235,8 @@ def resnet_v2_50(inputs,
|
|
|
return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
|
|
|
global_pool=global_pool, output_stride=output_stride,
|
|
|
include_root_block=True, reuse=reuse, scope=scope)
|
|
|
-resnet_v2_50.default_image_size = 224
|
|
|
+resnet_v2_50.default_image_size = resnet_v2.default_image_size
|
|
|
+
|
|
|
|
|
|
def resnet_v2_101(inputs,
|
|
|
num_classes=None,
|
|
@@ -256,7 +258,7 @@ def resnet_v2_101(inputs,
|
|
|
return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
|
|
|
global_pool=global_pool, output_stride=output_stride,
|
|
|
include_root_block=True, reuse=reuse, scope=scope)
|
|
|
-resnet_v2_101.default_image_size = 224
|
|
|
+resnet_v2_101.default_image_size = resnet_v2.default_image_size
|
|
|
|
|
|
|
|
|
def resnet_v2_152(inputs,
|
|
@@ -279,7 +281,7 @@ def resnet_v2_152(inputs,
|
|
|
return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
|
|
|
global_pool=global_pool, output_stride=output_stride,
|
|
|
include_root_block=True, reuse=reuse, scope=scope)
|
|
|
-resnet_v2_152.default_image_size = 224
|
|
|
+resnet_v2_152.default_image_size = resnet_v2.default_image_size
|
|
|
|
|
|
|
|
|
def resnet_v2_200(inputs,
|
|
@@ -302,4 +304,4 @@ def resnet_v2_200(inputs,
|
|
|
return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
|
|
|
global_pool=global_pool, output_stride=output_stride,
|
|
|
include_root_block=True, reuse=reuse, scope=scope)
|
|
|
-resnet_v2_200.default_image_size = 224
|
|
|
+resnet_v2_200.default_image_size = resnet_v2.default_image_size
|