|
@@ -90,8 +90,8 @@ def _activation_summary(x):
|
|
|
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
|
|
|
# session. This helps the clarity of presentation on tensorboard.
|
|
|
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
|
|
|
- tf.contrib.deprecated.histogram_summary(tensor_name + '/activations', x)
|
|
|
- tf.contrib.deprecated.scalar_summary(tensor_name + '/sparsity',
|
|
|
+ tf.histogram_summary(tensor_name + '/activations', x)
|
|
|
+ tf.scalar_summary(tensor_name + '/sparsity',
|
|
|
tf.nn.zero_fraction(x))
|
|
|
|
|
|
|
|
@@ -316,8 +316,8 @@ def _add_loss_summaries(total_loss):
|
|
|
for l in losses + [total_loss]:
|
|
|
# Name each loss as '(raw)' and name the moving average version of the loss
|
|
|
# as the original loss name.
|
|
|
- tf.contrib.deprecated.scalar_summary(l.op.name + ' (raw)', l)
|
|
|
- tf.contrib.deprecated.scalar_summary(l.op.name, loss_averages.average(l))
|
|
|
+ tf.scalar_summary(l.op.name + ' (raw)', l)
|
|
|
+ tf.scalar_summary(l.op.name, loss_averages.average(l))
|
|
|
|
|
|
return loss_averages_op
|
|
|
|
|
@@ -345,7 +345,7 @@ def train(total_loss, global_step):
|
|
|
decay_steps,
|
|
|
LEARNING_RATE_DECAY_FACTOR,
|
|
|
staircase=True)
|
|
|
- tf.contrib.deprecated.scalar_summary('learning_rate', lr)
|
|
|
+ tf.scalar_summary('learning_rate', lr)
|
|
|
|
|
|
# Generate moving averages of all losses and associated summaries.
|
|
|
loss_averages_op = _add_loss_summaries(total_loss)
|
|
@@ -360,12 +360,12 @@ def train(total_loss, global_step):
|
|
|
|
|
|
# Add histograms for trainable variables.
|
|
|
for var in tf.trainable_variables():
|
|
|
- tf.contrib.deprecated.histogram_summary(var.op.name, var)
|
|
|
+ tf.histogram_summary(var.op.name, var)
|
|
|
|
|
|
# Add histograms for gradients.
|
|
|
for grad, var in grads:
|
|
|
if grad is not None:
|
|
|
- tf.contrib.deprecated.histogram_summary(var.op.name + '/gradients', grad)
|
|
|
+ tf.histogram_summary(var.op.name + '/gradients', grad)
|
|
|
|
|
|
# Track the moving averages of all trainable variables.
|
|
|
variable_averages = tf.train.ExponentialMovingAverage(
|